Description
An array of positive integers a1,?a2,?...,?an is given. Let us consider
its arbitrary subarray al,?al?+?1...,?ar, where 1?≤?l?≤?r?≤?n.
For every positive integer s denote by Ks the number of occurrences of s into
the subarray. We call the power of the subarray the sum of products Ks·Ks·s for
every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.
You should calculate the power of t given subarrays.
Input
First line contains two integers n and t (1?≤?n,?t?≤?200000)
— the array length and the number of queries correspondingly.
Second line contains n positive integers ai (1?≤?ai?≤?106)
— the elements of the array.
Next t lines contain two positive integers l, r (1?≤?l?≤?r?≤?n)
each — the indices of the left and the right ends of the corresponding subarray.
Output
Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th
query subarray.
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).
Sample Input
Input
3 2 1 2 1 1 2 1 3
Output
3 6
Input
8 3 1 1 2 2 1 3 1 1 2 7 1 6 2 7
Output
20 20 20
题意:就问问你统计[L,R]中x1,x2,,xi出现次数a1,a2,,ai的ai*ai*xi和。
题解:分块暴力。
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<string> #include<iostream> #include<queue> #include<cmath> #include<map> #include<stack> #include<set> using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) typedef __int64 LL; const int INF = 0x3f3f3f3f; const int maxn=200000+100; LL up[maxn]; int col[maxn],sum[maxn*10],n,m,k; LL ans; struct node{ int l,r; int id; }q[maxn]; int cmp(node l1,node l2) { if(l1.l/k==l2.l/k) return l1.r<l2.r; return l1.l<l2.l; } void update(int x,int val) { ans-=(LL)col[x]*sum[col[x]]*sum[col[x]]; sum[col[x]]+=val; ans+=(LL)col[x]*sum[col[x]]*sum[col[x]]; } int main() { while(~scanf("%d%d",&n,&m)) { CLEAR(sum,0); k=sqrt(n*1.0+0.5); REPF(i,1,n) scanf("%d",&col[i]); REP(i,m) { scanf("%d%d",&q[i].l,&q[i].r); q[i].id=i; } sort(q,q+m,cmp); int L=0,R=0; ans=0; for(int i=0;i<m;i++) { int id=q[i].id; int l=q[i].l; int r=q[i].r; while(L < l) { update(L,-1); L++; } while(R > r) { update(R,-1); R--; } while(L > l) { L--; update(L,1); } while(R < r) { R++; update(R,1); } up[id]=ans; } for(int i=0;i<m;i++) printf("%I64d\n",up[i]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。