第几是谁?
时间限制:3000 ms | 内存限制:65535 KB
难度:3
- 描述
-
现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的。但是现在我们给出它是第几小,需要你求出它所代表的序列.
- 输入
-
第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个整数m,它代表着序列的第几小;
- 输出
- 输出一个序列,占一行,代表着第m小的序列。
- 样例输入
-
3 1 302715242 260726926
- 样例输出
-
abcdefghijkl hgebkflacdji gfkedhjblcia
- 来源
- [路过这]原创
- 上传者
-
路过这
以下资料参考自张朋飞学长的博客,(因为他好像也是HPU的)。
1.康托展开的解释
康托展开就是一种特殊的哈希函数
把一个整数X展开成如下形式:
X=a[n]*n!+a[n-1]*(n-1)!+...+a[2]*2!+a[1]*1!
其中,a为整数,并且0<=a<i,i=1,2,..,n
{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个
。所以321是第6个大的数。 2*2!+1*1!是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以
有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
康托展开的代码(C语言):
//参数int s[]为待展开之数的各位数字,如需展开2134,则s[4]={2,1,3,4}.
int fac[]={1,1,2,6,24,120,720,5040,40320,362880};//...
long cantor(int s[],int n){
int i,j,temp,num;
num=0;
for(i=1;i<n;i++){//n为位数
temp=0;
for(int j=i+1;j<=n;j++){
if(s[j]<s[i]) temp++;
}
num+=fac[n-i]*temp;
}
return (num+1);
}
\
康托展开的逆运算
例 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕
(1)找出第96个数
首先用96-1得到95
用95去除4! 得到3余23
用23去除3! 得到3余5
用5去除2!得到2余1
用1去除1!得到1余0有3个数比它小的数是4
所以第一位是4
有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)
有2个数比它小的数是3
有1个数比它小的数是2
最后一个数只能是1
所以这个数是45321
(2)找出第16个数
首先用16-1得到15
用15去除4!得到0余15
用15去除3!得到2余3
用3去除2!得到1余1
用1去除1!得到1余0
有0个数比它小的数是1
有2个数比它小的数是3 但由于1已经在之前出现过了所以是4(因为1在之前出现过了所以实际比4小的数是2)
有1个数比它小的数是2 但由于1已经在之前出现过了所以是3(因为1在之前出现过了所以实际比3小的数是1)
有1个数比它小得数是2 但由于1,3,4已经在之前出现过了所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)
最后一个数只能是2
所以这个数是14352
#include <stdio.h> #include <string.h> char str[15]; bool vis[15]; const int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800}; int Find(int k) { for(int i = 0; i < 12; ++i) if(!vis[i] && 0 == k--) return (vis[i] = 1, i); } int main() { int t, n, i, a, b, id; scanf("%d", &t); while(t--) { scanf("%d", &n); memset(vis, 0, sizeof(vis)); b = n - 1; id = 0; for(i = 11; i; --i) { a = b / fac[i]; b = b % fac[i]; str[id++] = 'a' + Find(a); } str[id++] = 'a' + Find(0); printf("%s\n", str); } return 0; }