深度解读最流行的优化算法:梯度下降(精简版)

前言

本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此不赘述。

SGD

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

其中,是学习率,是梯度 SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

  • 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
  • SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】

Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

其中,是动量因子

特点:

  • 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速
  • 下降中后期时,在局部最小值来回震荡的时候,使得更新幅度增大,跳出陷阱
  • 在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

Nesterov

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。 将上一节中的公式展开可得:

可以看出,并没有直接改变当前梯度,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:

所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:

momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

Adagrad

Adagrad其实是对学习率进行了一个约束。即:

此处,对从1到进行一个递推形成一个约束项regularizer,用来保证分母非0

特点:

  • 前期较小的时候, regularizer较大,能够放大梯度
  • 后期较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度

缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • 设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束

Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

其中,代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

RMSprop

RMSprop可以算作Adadelta的一个特例:

时,就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

此时,这个RMS就可以作为学习率的一个约束:

特点:

  • 其实RMSprop依然依赖于全局学习率
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标 - 对于RNN效果很好

Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

其中,分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望的估计;是对的校正,这样可以近似为对期望的无偏估计。 可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而对学习率形成一个动态约束,而且有明确的范围。

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间

Adamax

Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:

可以看出,Adamax学习率的边界范围更简单

Nadam

Nadam类似于带有Nesterov动量项的Adam。公式如下:

可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。

经验之谈

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
  • Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
  • 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了... ...

图5:SGD optimization on loss surface contours

图6:SGD optimization on saddle point

转载:https://zhuanlan.zhihu.com/p/22252270?utm_source=qq&utm_medium=social

时间: 2024-10-12 18:36:06

深度解读最流行的优化算法:梯度下降(精简版)的相关文章

深度解读最流行的优化算法:梯度下降

深度解读最流行的优化算法:梯度下降 By 机器之心2016年11月21日 15:08 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战.(本文的中文版 PDF 下载地址) 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent)

优化算法—梯度下降

转自:https://www.cnblogs.com/shixiangwan/p/7532858.html 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战. 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent) 随机梯度下降

[算法] 优化算法 梯度下降

导数 导数是一个数,函数y(x)在x0点的导数y'(x0)反应了在x0处y随x的变化快慢 微分 微分指函数值的微小变化 在x0可微:在x0点y和x的微分成线性关系(只与该点函数值有关) 导数可看做函数的微分与自变量的微分之商,故导数又称微商 偏导数 函数在一点处沿坐标轴的变化率 方向导数 函数在一点处沿射线方向的变化率 偏导数是双侧的,方向导数是单侧的.函数f(x,y)在一点处对x偏导数等于沿x轴正向的方向导数 梯度 梯度是一个向量 方向导数沿梯度方向取最大值,最大值为梯度的模,即沿梯度方向函数

机器学习最常用优化之一——梯度下降优化算法综述

转自:http://www.dataguru.cn/article-10174-1.html 梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法.几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现.但是,它们就像一个黑盒优化器,很难得到它们优缺点的实际解释.这篇文章旨在提供梯度下降算法中的不同变种的介绍,帮助使用者根据具体需要进行使用. 这篇文章首先介绍梯度下降算法的三种框架,然后介绍它们所存在的

吴恩达-深度学习-课程笔记-7: 优化算法( Week 2 )

1 Mini-batch梯度下降 在做梯度下降的时候,不选取训练集的所有样本计算损失函数,而是切分成很多个相等的部分,每个部分称为一个mini-batch,我们对一个mini-batch的数据计算代价,做完梯度下降,再对下一个mini-batch做梯度下降.比如500w个数据,一个mini-batch设为1000的话,我们就做5000次梯度下降(5000个mini-batch,每个mini-batch样本数为1000,总共500w个样本). 对于batch梯度下降(每次计算所有的样本),随着迭代

最优化算法-梯度下降

梯度下降算法,参考Edwin<最优化导论>8.2章节,算法采用go语言实现. 此处算法仍然存在疑惑,主要是获取梯度下降时如何确定步长,即使采用割线法获取最优步长,那么割线法的初始值又如何确定?? 下面程序中虽然采用了牛顿法获取极值,但非常依赖初始取值范围!! /***************************************** * FileName : grad.go * Author : fredric * Date : 2017.09.01 * Note : 梯度算法 *

优化算法比较的实验结果比较(BGD,SGD,MBGD,Momentum,Nesterov,Adagrad,RMSprop)

最近在学习神经网络的优化算法,发现网上有很多的算法介绍,但是却没有算法实现和实验对比,所以我就用python实现了BGD,SGD,MBGD,Momentum,Nesterov,Adagrad,RMSprop等算法,另外的Adam和NAdam算法是将Momentum,Nesterov,Adagrad几项合并起来的算法,属于工程方面的内容,所以我就没有实现了. 算法原理主要参考文献是: 整体算法参考:深度解读最流行的优化算法:梯度下降 整体算法参考:深度学习最全优化方法总结比较(SGD,Adagra

梯度下降优化算法综述(翻译)

原文链接:http://sebastianruder.com/optimizing-gradient-descent 原文题目:An overview of gradient descent optimization algorithms 博文地址:http://blog.csdn.net/wangxinginnlp/article/details/50974594 梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法.与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降

梯度下降优化算法综述

本文翻译自Sebastian Ruder的"An overview of gradient descent optimization algoritms",作者首先在其博客中发表了这篇文章,其博客地址为:An overview of gradient descent optimization algoritms,之后,作者将其整理完放在了arxiv中,其地址为:An overview of gradient descent optimization algoritms,在翻译的过程中以