Ikki's Story IV - Panda's Trick (poj 3207 2-SAT)


Language:
Default

Ikki‘s Story IV - Panda‘s Trick

Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 8796   Accepted: 3241

Description

liympanda, one of Ikki’s friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki.

liympanda has a magic circle and he puts it on a plane, there are n points on its boundary in circular border: 0, 1, 2, …, n ? 1. Evil panda claims that he is connecting m pairs of points. To connect two points, liympanda either places
the link entirely inside the circle or entirely outside the circle. Now liympanda tells Ikki no two links touch inside/outside the circle, except on the boundary. He wants Ikki to figure out whether this is possible…

Despaired at the minesweeping game just played, Ikki is totally at a loss, so he decides to write a program to help him.

Input

The input contains exactly one test case.

In the test case there will be a line consisting of of two integers: n and m (n ≤ 1,000, m ≤ 500). The following m lines each contain two integers ai and bi, which denote
the endpoints of the ith wire. Every point will have at most one link.

Output

Output a line, either “panda is telling the truth...” or “the evil panda is lying again”.

Sample Input

4 2
0 1
3 2

Sample Output

panda is telling the truth...

Source

POJ Monthly--2007.03.04, Ikki

题意:有n个点在一个圆上,标号0~n-1,有m条线段告诉两个端点的标号,每条线段可以在画在圆内也可以画在圆外,问这m条线段能否不向交。

思路:2-SAT模板题,把每条线段当做节点,每条线有两种状态(圆内和圆外,两者只能取其一),建图后求强连通,看 i 和 i‘ 是否在同一个连通分量,若在则无解,否则有解。

参考:由对称性解2-SAT问题  还有 kuangbin神牛的总结点击打开链接

代码:

#include <iostream>
#include <functional>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005;

struct Edge
{
    int to,next;
}edge[MAXM];

int head[MAXN],tot;

void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v)
{
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}

int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
int Index,scc,top;
bool Instack[MAXN];

void Tarjan(int u)
{
    int v;
    Low[u]=DFN[u]=++Index;
    Stack[top++]=u;
    Instack[u]=true;
    for (int i=head[u];~i;i=edge[i].next)
    {
        v=edge[i].to;
        if (!DFN[v])
        {
            Tarjan(v);
            if (Low[u]>Low[v])
                Low[u]=Low[v];
        }
        else if (Instack[v]&&Low[u]>DFN[v])
            Low[u]=DFN[v];
    }
    if (Low[u]==DFN[u])
    {
        ++scc;
        do{
            v=Stack[--top];
            Instack[v]=false;
            Belong[v]=scc;
        }while (v!=u);
    }
    return ;
}

bool solvable(int n)
{
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    Index=scc=top=0;
    for (int i=0;i<n;i+=2)
        if (!DFN[i])
            Tarjan(i);
    for (int i=0;i<n;i+=2)
    {
        if (Belong[i]==Belong[i^1])
            return false;
    }
    return true;
}

struct Line
{
    int s,t;
}line[MAXN];

int n,m;

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
    int i,j;
    scanf("%d%d",&n,&m);
    init();
    for (i=0;i<m;i++)
    {
        scanf("%d%d",&line[i].s,&line[i].t);
        if (line[i].s>line[i].t) swap(line[i].s,line[i].t);
    }
    for (i=0;i<m;i++)
    {
        for (j=i+1;j<m;j++)
        {
            if (line[i].s<line[j].s&&line[i].t>line[j].s&&line[i].t<line[j].t||line[j].s<line[i].s&&line[j].t>line[i].s&&line[j].t<line[i].t)
            {
                addedge(2*i,2*j+1);
                addedge(2*j+1,2*i);
                addedge(2*j,2*i+1);
                addedge(2*i+1,2*j);
            }
        }
    }
    if (solvable(m*2))
        printf("panda is telling the truth...\n");
    else
        printf("the evil panda is lying again\n");
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Ikki's Story IV - Panda's Trick (poj 3207 2-SAT)

时间: 2024-10-11 07:27:56

Ikki's Story IV - Panda's Trick (poj 3207 2-SAT)的相关文章

POJ Ikki&#39;s Story IV - Panda&#39;s Trick [2-SAT]

题意: 圆上n个点,m对点之间连边,连在园内或园外,所有边不相交是否可行 发现两对点连线都在内相交则都在外也相交,那么只有一个在内一个在外啦,转化为$2-SAT$问题 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int N=1005,M=5e5; t

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick

简单的看了2-sat……似乎还是挺神奇的东西……等大致刷完几道题再来写总结吧! 而这道题……算是2-sat的超级入门题了吧 不过题目大意也是醉了:圆上顺序排列n个点,现要在一些点间连边,规定边只能在圆内或圆外,求有没有可能不相交 .一开始想的是嗷嗷嗷,圆上两个点的连线怎么可能有什么在圆外在圆内之分,不都是弦么?后来才知道……原来两个点的连线不是直线可以使曲线…… 判定是否相交很简单吧……看成是一条直线上四个点,那么如果e1.a<e2.a<e1.b<e2.b就相交啦…… 都说是热身题没多难

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick (2-SAT)

题目地址:POJ 3207 找好矛盾关系,矛盾关系是(2,5)和(3,6)这两个只能一个在外边,一个在里边,利用这个矛盾关系来建图. 可以用在外边和里边来当1和0,最后判断每对是否出现矛盾. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #inc

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2 - sat啊)

题目链接:http://poj.org/problem?id=3207 Description liympanda, one of Ikki's friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki. liy

【POJ】3207 Ikki&#39;s Story IV - Panda&#39;s Trick

http://poj.org/problem?id=3207 题意:一个圆上顺时针依次排列着标号为1-n的点,这些点之间共有m条边相连,每两个点只能在圆内或者圆外连边.问是否存在这些边不相交的方案.(n<=1000, m<=500) #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <iostream> using n

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

POJ 3207 Ikki's Story IV - Panda's Trick 题目链接 题意:一个圆上顺序n个点,然后有m组连线,连接两点,要求这两点可以往圆内或圆外,问是否能构造出使得满足所有线段不相交 思路:2-sat,判断相交的建边,一个在内,一个在外,然后跑一下2-sat即可 代码: #include <cstdio> #include <cstring> #include <cstdlib> #include <vector> #include

[2-SAT] poj 3207 Ikki&#39;s Story IV - Panda&#39;s Trick

题目链接: http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8063   Accepted: 2969 Description liympanda, one of Ikki's friend, likes playing games with Ikki. Today after minesweep

poj 3207 Ikki&#39;s Story IV - Panda&#39;s Trick【2-set】

题目:poj 3207 Ikki's Story IV - Panda's Trick 题意:给出一个有(0-n-1)组成的圆,然后连接上面的一些点,可以选择从圆内部连接或者内部连接,然后问你所有的都不想交可不可行 分析:对于每条Link,要么在圆外,要么在圆内,且不可同时满足, 只能两者取一,判断这M条Link是否合法,也就是M条Link不冲突, 这就是典型的2-sat问题了. 将每条Link i 看做一个点,如果Link在圆内, 则选做i ,如果在圆外, 则选做i'.对于两条线(i,j) ,

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat判解存在性)

题意:平面上,一个圆,圆的边上按顺时针放着n个点.现在要连m条边,比如a,b,那么a到b可以从圆的内部连接,也可以从圆的外部连接.给你的信息中,每个点最多只会连接的一条边.问能不能连接这m条边,使这些边都不相交. 算比较裸的题目了,关键找到如何判断两对点交不交叉的关系就好 #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector&g