序贯模型(Sequential)
序贯模型是多个网络层的线性堆叠。
可以通过向Sequential模型传递一个layer的list来构造该模型:
from Keras.models import Sequential from Keras.layers import Dense,Activation model = Sequential([Dense(32,units=784),Activation(‘relu‘),Dense(10),Activation(‘softmax‘),])
也可以通过.add()方法一个个的将layer加入到模型中:
model = Sequential() model.add(Dense(32,input_shape=(784,))) model.add(Activation(‘relu‘))
指定输入数据的Shape
模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape
时间: 2024-11-05 12:09:07