【LeetCode】【动态规划】Edit Distance

描述

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace ‘h‘ with ‘r‘)
rorse -> rose (remove ‘r‘)
rose -> ros (remove ‘e‘)

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove ‘t‘)
inention -> enention (replace ‘i‘ with ‘e‘)
enention -> exention (replace ‘n‘ with ‘x‘)
exention -> exection (replace ‘n‘ with ‘c‘)
exection -> execution (insert ‘u‘)

思路:动态规划

这是一个经典的动态规划问题,思路参考斯坦福的课程:http://www.stanford.edu/class/cs124/lec/med.pdf

这里把加2变成加1即可

  1. dp[i][0] = i;
  2. dp[0][j] = j;
  3. dp[i][j] = dp[i - 1][j - 1], if word1[i - 1] = word2[j - 1];
  4. dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1), otherwise.
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
        for(int i = 1;i<=m;++i)
            dp[i][0] = i;
        for(int i = 1;i<=n;++i)
            dp[0][i] = i;
        for(int i = 1;i<=m;++i){
            for(int j = 1;j<=n;++j){
                if(word1[i-1] == word2[j-1])
                    dp[i][j] = dp[i-1][j-1];
                else
                    dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1;
            }
        }
        return dp[m][n];
    }
};

原文地址:https://www.cnblogs.com/ygh1229/p/9798807.html

时间: 2024-10-19 18:10:37

【LeetCode】【动态规划】Edit Distance的相关文章

【leetcode】Edit Distance 详解

下图为TI C6xx DSP Nyquist总线拓扑图,总线连接了master与slave,提供了高速的数据传输.有很多种速率不同的总线,如图中的红色方框,最高速总线为CPU/2 TeraNet SCR(即VBUSM SCR),带宽为256bit,其他低速总线为CPU/3,CPU/6,带宽参考图中所示.总线之间用Bridge(桥)连接,作用包括转换总线的速率,使之与所流向总线的速率相同等. 在具体应用中,各种速率的总线完全可以满足复杂的数据传输,而数据传输的瓶颈往往在于连接总线之间的Bridge

[LeetCode] One Edit Distance 一个编辑距离

Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance的拓展,然而这道题并没有那道题难,这道题只让我们判断两个字符串的编辑距离是否为1,那么我们只需分下列三种情况来考虑就行了: 1. 两个字符串的长度之差大于1,那么直接返回False 2. 两个字符串的长度之差等于1,那么长的那个字符串去掉一个字符,剩下的应该和短的字符串相同 3. 两个字符串的长度之

LeetCode One Edit Distance

原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if they are both one edit distance apart. 与Edit Distance类似. 若是长度相差大于1, return false. 若是长度相差等于1, 遇到不同char时, 长的那个向后挪一位. 若是长度相等, 遇到不同char时同时向后挪一位. 出了loop还没有返回,

leetCode 72.Edit Distance (编辑距离) 解题思路和方法

Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a char

LeetCode 72. Edit Distance Java

72.Edit Distance(编辑距离) 题目: 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 思路: 多次选择试图得到最优解,那么考虑动态规划. 先假设word1有len1位,word2有len2位,建立数组step,step[i][j]就代表我们要将word1前 i 位转换为word2前 j 位的最少数量. 此时word1查找到第 i+1 位字母a,

Leetcode dp Edit Distance

Edit Distance Total Accepted: 14997 Total Submissions: 59129My Submissions Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operation

LeetCode 72 Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Repla

【leetcode】Edit Distance (hard)

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a characterc) Replace

第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三种情况考虑 分别对应三中操作 因为只需要三个值就可以更新dp[i][j] 我们可以把空间复杂度降低到O(n) Replace word1[i - 1] by word2[j - 1] (dp[i][j] = dp[i - 1][j - 1] + 1 (for replacement)); Delet

【leetcode】Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a characterc) Replace