JVM系列第4讲:从源代码到机器码,发生了什么?

在上篇文章我们聊到,无论什么语言写的代码,其到最后都是通过机器码运行的,无一例外。那么对于 Java 语言来说,其从源代码到机器码,这中间到底发生了什么呢?这就是今天我们要聊的。

如下图所示,编译器可以分为:前端编译器、JIT 编译器和AOT编译器。下面我们逐个讲解。

前端编译器:源代码到字节码

之前我们说到:对于 Java 虚拟机来说,其实际输入的是字节码文件,而不是 Java 文件。那么对于 Java 语言而言,其实怎么将 Java 代码转化成字节码文件的呢?我们知道在 JDK 的安装目录里有一个 javac 工具,就是它将 Java 代码翻译成字节码,这个工具我们叫做编译器。相对于后面要讲的其他编译器,其因为处于编译的前期,因此又被成为前端编译器。

通过 javac 编译器,我们可以很方便地将 java 源文件翻译成字节码文件。就拿我们最熟悉的 Hello World 作为例子:

public class Demo{
   public static void main(String args[]){
        System.out.println("Hello World!");
   }
}

我们使用 javac 命令编译上面这个类,便会生成一个 Demo.class 文件:

> javac Demo.java
> ls
Demo.java Demo.class

我们使用纯文本编辑器打开 Demo.class 文件,我们会发现是一连串的 16 进制二进制流。

我们运行 javac 命令的过程,其实就是 javac 编译器解析 Java 源代码,并生成字节码文件的过程。说白了,其实就是使用 javac 编译器把 Java 语言规范转化为字节码语言规范。javac 编译器的处理过程可以分为下面四个阶段:

第一个阶段:词法、语法分析。在这个阶段,JVM 会对源代码的字符进行一次扫描,最终生成一个抽象的语法树。简单地说,在这个阶段 JVM 会搞懂我们的代码到底想要干嘛。就像我们分析一个句子一样,我们会对句子划分主谓宾,弄清楚这个句子要表达的意思一样。

第二个阶段:填充符号表。我们知道类之间是会互相引用的,但在编译阶段,我们无法确定其具体的地址,所以我们会使用一个符号来替代。在这个阶段做的就是类似的事情,即对抽象的类或接口进行符号填充。等到类加载阶段,JVM 会将符号替换成具体的内存地址。

第三个阶段:注解处理。我们知道 Java 是支持注解的,因此在这个阶段会对注解进行分析,根据注解的作用将其还原成具体的指令集。

第四个阶段:分析与字节码生成。到了这个阶段,JVM 便会根据上面几个阶段分析出来的结果,进行字节码的生成,最终输出为 class 文件。

我们一般称 javac 编译器为前端编译器,因为其发生在整个编译的前期。常见的前端编译器有 Sun 的 javac,Eclipse JDT 的增量式编译器(ECJ)。

JIT 编译器:从字节码到机器码

当源代码转化为字节码之后,其实要运行程序,有两种选择。一种是使用 Java 解释器解释执行字节码,另一种则是使用 JIT 编译器将字节码转化为本地机器代码。

这两种方式的区别在于,前者启动速度快但运行速度慢,而后者启动速度慢但运行速度快。至于为什么会这样,其原因很简单。因为解释器不需要像 JIT 编译器一样,将所有字节码都转化为机器码,自然就少去了优化的时间。而当 JIT 编译器完成第一次编译后,其会将字节码对应的机器码保存下来,下次可以直接使用。而我们知道,机器码的运行效率肯定是高于 Java 解释器的。所以在实际情况中,为了运行速度以及效率,我们通常采用两者相结合的方式进行 Java 代码的编译执行。

在 HotSpot 虚拟机内置了两个即时编译器,分别称为 Client Compiler 和Server Compiler。这两种不同的编译器衍生出两种不同的编译模式,我们分别称之为:C1 编译模式,C2 编译模式。

注意:现在许多人习惯上将 Client Compiler 称为 C1 编译器,将 Server Compiler 称为 C2 编译器,但在 Oracle 官方文档中将其描述为 compiler mode(编译模式)。所以说 C1 编译器、C2 编译器只是我们自己的习惯性称呼,并不是官方的说法。这点需要特别注意。

那么 C1 编译模式和 C2 编译模式有什么区别呢?

C1 编译模式会将字节码编译为本地代码,进行简单、可靠的优化,如有必要将加入性能监控的逻辑。而 C2 编译模式,也是将字节码编译为本地代码,但是会启用一些编译耗时较长的优化,甚至会根据性能监控信息进行一些不可靠的激进优化。

简单地说 C1 编译模式做的优化相对比较保守,其编译速度相比 C2 较快。而 C2 编译模式会做一些激进的优化,并且会根据性能监控做针对性优化,所以其编译质量相对较好,但是耗时更长。

那么到底应该选择 C1 编译模式还是 C2 编译模式呢?

实际上对于 HotSpot 虚拟机来说,其一共有三种运行模式可选,分别是:

  • 混合模式(Mixed Mode) 。即 C1 和 C2 两种模式混合起来使用,这是默认的运行模式。如果你想单独使用 C1 模式或 C2 模式,使用 -client-server 打开即可。
  • 解释模式(Interpreted Mode)。即所有代码都解释执行,使用 -Xint 参数可以打开这个模式。
  • 编译模式(Compiled Mode)。 此模式优先采用编译,但是无法编译时也会解释执行,使用 -Xcomp 打开这种模式。

在命令行中输入 java -version 可以看到,我机器上的虚拟机使用 Mixed Mode 运行模式。

写到这里,我们了解了从 Java 源代码到字节码,再从字节码到机器码的全过程。本来到这里就应该结束了,但在我们 Java 中还有一个 AOT 编译器,它能直接将源代码转化为机器码。

AOT 编译器:源代码到机器码

AOT 编译器的基本思想是:在程序执行前生成 Java 方法的本地代码,以便在程序运行时直接使用本地代码。

但是 Java 语言本身的动态特性带来了额外的复杂性,影响了 Java 程序静态编译代码的质量。例如 Java 语言中的动态类加载,因为 AOT 是在程序运行前编译的,所以无法获知这一信息,所以会导致一些问题的产生。类似的问题还有很多,这里就不一一举例了。

总的来说,AOT 编译器从编译质量上来看,肯定比不上 JIT 编译器。其存在的目的在于避免 JIT 编译器的运行时性能消耗或内存消耗,或者避免解释程序的早期性能开销。

在运行速度上来说,AOT 编译器编译出来的代码比 JIT 编译出来的慢,但是比解释执行的快。而编译时间上,AOT 也是一个始终的速度。所以说,AOT 编译器的存在是 JVM 牺牲质量换取性能的一种策略。就如 JVM 其运行模式中选择 Mixed 混合模式一样,使用 C1 编译模式只进行简单的优化,而 C2 编译模式则进行较为激进的优化。充分利用两种模式的优点,从而达到最优的运行效率。

总结

在 JVM 中有三个非常重要的编译器,它们分别是:前端编译器、JIT 编译器、AOT 编译器。

前端编译器,最常见的就是我们的 javac 编译器,其将 Java 源代码编译为 Java 字节码文件。JIT 即时编译器,最常见的是 HotSpot 虚拟机中的 Client Compiler 和 Server Compiler,其将 Java 字节码编译为本地机器代码。而 AOT 编译器则能将源代码直接编译为本地机器码。这三种编译器的编译速度和编译质量如下:

  • 编译速度上,解释执行 > AOT 编译器 > JIT 编译器。
  • 编译质量上,JIT 编译器 > AOT 编译器 > 解释执行。

而在 JVM 中,通过这几种不同方式的配合,使得 JVM 的编译质量和运行速度达到最优的状态。

参考资料

JVM系列目录



如果只是看,其实无法真正学会知识的。为了帮助大家更好地学习,我建了一个虚拟机群,专门讨论学习 Java 虚拟机方面的内容,每周针对我所发文章进行讨论答疑。如果你有兴趣,关注「Java技术精选」公众号,通过右下角菜单「入群交流」加我好友,小助手会拉你入群。



JVM系列第4讲:从源代码到机器码,发生了什么?

原文地址:https://www.cnblogs.com/chanshuyi/p/jvm_serial_04_from_source_code_to_machine_code.html

时间: 2024-08-04 06:31:48

JVM系列第4讲:从源代码到机器码,发生了什么?的相关文章

jvm系列:Java GC 分析

Java GC就是JVM记录仪,书画了JVM各个分区的表演. 什么是 Java GC Java GC(Garbage Collection,垃圾收集,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码,对内存泄露和溢出的问题,也不需要像C程序员那样战战兢兢.这是因为在Java虚拟机中,存在自动内存管理和垃圾清扫机制.概括地说,该机制对JVM(Java Virtual Machine)中的内存进行标记,并确定哪些内存需要回收,根据一定

JVM系列(二)之类加载

什么是类的加载 类加载是指将源代码编译后的.class加载到内存中初始化待程序使用的过程,类加载的最终结果就是将.class字节码加载到JVM中生成一个java.lang.Class对象,提供给程序使用的访问入口. 类加载的过程 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.它们开始的顺序如下图所示: 其中类加载的过程包括了加载.验证.准备.解析.初始化五个阶段.在这五个阶段中,加载.验证.准备和初始化这四个阶段发生的顺

[转]JVM系列一:JVM内存组成及分配

原文地址:http://www.cnblogs.com/redcreen/archive/2011/05/04/2036387.html JVM系列一:JVM内存组成及分配 java内存组成介绍:堆(Heap)和非堆(Non-heap)内存 按照官方的说法:"Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配.堆是在 Java 虚拟机启动时创建的.""在JVM中堆之外的内存称为非堆内存(Non-heap memory)".可以看出JV

JVM系列-常用参数

1.堆内存 堆内存用于存储new对象,垃圾回收器负责堆内存的管理.但Java程序实际占用的空间则由堆内存.栈内存(程序运行栈).程序计数器.常量区.代码区.本地内存等. 堆内存分为Young和Old,Young分为2个Survivor (From Survivor和To Survivor),1个eden,具体见JVM系列-垃圾回收. -Xms??[m|g] 初始堆内存大小,默认为物理内存的1/64,单位是Byte -Xmx??[m|g] 最大堆大小,默认为物理内存的1/4,单位是Byte.虽然程

深入JVM系列(二)之GC机制、收集器与GC调优(转)

一.回顾JVM内存分配 需要了解更多内存模式与内存分配的,请看 深入JVM系列(一)之内存模型与内存分配 1.1.内存分配: 1.对象优先在EDEN分配2.大对象直接进入老年代 3.长期存活的对象将进入老年代 4.适龄对象也可能进入老年代:动态对象年龄判断 动态对象年龄判断: 虚拟机并不总是要求对象的年龄必须达到MaxTenuringThreshold才能晋升到老年代,当Survivor空间的相同年龄的所有对象大小总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代

jvm系列(八):jvm知识点总览-高级Java工程师面试必备

在江湖中要练就绝世武功必须内外兼备,精妙的招式和深厚的内功,武功的基础是内功.对于武功低(就像江南七怪)的人,招式更重要,因为他们不能靠内功直接去伤人,只能靠招式,利刃上优势来取胜了,但是练到高手之后,内功就更主要了.一个内功低的人招式在奇妙也打不过一个内功高的人.比如,你剑法再厉害,一剑刺过来,别人一掌打断你的剑,你还怎么使剑法,你一掌打到一个武功高的人身上,那人没什么事,却把你震伤了,你还怎么打.同样两者也是相辅相成的,内功深厚之后,原来普通的一招一式威力也会倍增. 对于搞开发的我们其实也是

JVM系列文章(二):垃圾回收机制

作为一个程序员,仅仅知道怎么用是远远不够的.起码,你需要知道为什么可以这么用,即我们所谓底层的东西. 那到底什么是底层呢?我觉得这不能一概而论.以我现在的知识水平而言:对于Web开发者,TCP/IP.HTTP等等协议可能就是底层:对于C.C++程序员,内存.指针等等可能就是底层的东西.那对于Java开发者,你的Java代码运行所在的JVM可能就是你所需要去了解.理解的东西. 我会在接下来的一段时间,和读者您一起去学习JVM,所有内容均参考自<深入理解Java虚拟机:JVM高级特性与最佳实践>(

深入JVM系列(二)之GC机制、收集器与GC调优

一.回想JVM内存分配 须要了解很多其它内存模式与内存分配的,请看 深入JVM系列(一)之内存模型与内存分配 1.1.内存分配: 1.对象优先在EDEN分配 2.大对象直接进入老年代 3.长期存活的对象将进入老年代 4.适龄对象也可能进入老年代:动态对象年龄推断 动态对象年龄推断: 虚拟机并不总是要求对象的年龄必须达到MaxTenuringThreshold才干晋升到老年代,当Survivor空间的同样年龄的全部对象大小总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就能够直接进入

JVM系列文章(三):Class文件内容解析

作为一个程序员,仅仅知道怎么用是远远不够的.起码,你需要知道为什么可以这么用,即我们所谓底层的东西. 那到底什么是底层呢?我觉得这不能一概而论.以我现在的知识水平而言:对于Web开发者,TCP/IP.HTTP等等协议可能就是底层:对于C.C++程序员,内存.指针等等可能就是底层的东西.那对于Java开发者,你的Java代码运行所在的JVM可能就是你所需要去了解.理解的东西. 我会在接下来的一段时间,和读者您一起去学习JVM,所有内容均参考自<深入理解Java虚拟机:JVM高级特性与最佳实践>(