tensorflow用dropout解决over fitting-【老鱼学tensorflow】

在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好。

图中黑色曲线是正常模型,绿色曲线就是overfitting模型。尽管绿色曲线很精确的区分了所有的训练数据,但是并没有描述数据的整体特征,对新测试数据的适应性较差。

一般用于解决过拟合的方法有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练的时候, 我们随机忽略掉一些神经元和神经联结 , 是这个神经网络变得”不完整”. 用一个不完整的神经网络训练一次.

到第二次再随机忽略另一些, 变成另一个不完整的神经网络. 有了这些随机 drop 掉的规则, 我们可以想象其实每次训练的时候, 我们都让每一次预测结果都不会依赖于其中某部分特定的神经元. 像l1, l2正规化一样, 过度依赖的 W , 也就是训练参数的数值会很大, l1, l2会惩罚这些大的 参数. Dropout 的做法是从根本上让神经网络没机会过度依赖.

本次我们使用之前sklearn中手写数字作为例子来进行。

加载数据

from sklearn.datasets import load_digits
from sklearn.preprocessing import LabelBinarizer

digits = load_digits()
X = digits.data
y = digits.target

# 把数值转换成one hot格式,例如:数字4就会被转换成:[0 0 0 0 1 0 0 0 0 0]
y = LabelBinarizer().fit_transform(y)
# 拆分数据集,以总量的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

添加层

添加层函数如下:

import tensorflow as tf
def add_layer(inputs, in_size, out_size, activation_function=None):
    """
    添加层
    :param inputs: 输入数据
    :param in_size: 输入数据的列数
    :param out_size: 输出数据的列数
    :param activation_function: 激励函数
    :return:
    """

    # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # 偏置shape为1行out_size列
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        # 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
        outputs = Wx_plus_b
    else:
        # 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

定义placehoder和创建实际的网络结构

# 定义placeholder
# 输入的手写数字大小为8*8单位的数据
xs = tf.placeholder(tf.float32, [None, 8*8])
# 输出值为one hot结构的数据
ys = tf.placeholder(tf.float32, [None, 10])

# 添加层
# 第一层输入为8*8单位的手写输入数字图像,输出设定为100个神经元的层(为了能够看出是overfitting的问题),激活函数一般用tanh比较好
l1 = add_layer(xs, 8*8, 100, activation_function=tf.nn.tanh)
# 输出层因为最终是一个one hot的结构,因此输出的大小为10,激活函数用softmax
prediction = add_layer(l1, 100, 10, activation_function=tf.nn.softmax)

定义损失函数

# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), axis=1))
# 在tensorboard中记录损失函数值
tf.summary.scalar(‘loss‘, cross_entropy)
# 用梯度下降优化器进行训练
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

记录损失函数并运行

sess = tf.Session()
merged = tf.summary.merge_all()
# 分别记录训练集的loss和测试集的loss值,目的是为了能够对比训练集和测试集中得拟合情况
train_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/train", sess.graph)
test_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/test", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(500):
    sess.run(train_step, feed_dict={xs:X_train, ys:y_train})
    if i % 50 == 0:
        # 分别用训练集和测试集数据获得损失函数值
        train_result = sess.run(merged, feed_dict={xs:X_train, ys: y_train})
        train_writer.add_summary(train_result, i)

        test_result = sess.run(merged, feed_dict={xs:X_test, ys: y_test})
        test_writer.add_summary(test_result, i)

完整代码

from sklearn.datasets import load_digits
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split

digits = load_digits()
X = digits.data
y = digits.target

# 把数值转换成one hot格式,例如:数字4就会被转换成:[0 0 0 0 1 0 0 0 0 0]
y = LabelBinarizer().fit_transform(y)
# 拆分数据集,以总量的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

import tensorflow as tf
def add_layer(inputs, in_size, out_size, activation_function=None):
    """
    添加层
    :param inputs: 输入数据
    :param in_size: 输入数据的列数
    :param out_size: 输出数据的列数
    :param activation_function: 激励函数
    :return:
    """

    # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # 偏置shape为1行out_size列
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        # 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
        outputs = Wx_plus_b
    else:
        # 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

# 定义placeholder
# 输入的手写数字大小为8*8单位的数据
xs = tf.placeholder(tf.float32, [None, 8*8])
# 输出值为one hot结构的数据
ys = tf.placeholder(tf.float32, [None, 10])

# 添加层
# 第一层输入为8*8单位的手写输入数字图像,输出设定为100个神经元的层(为了能够看出是overfitting的问题),激活函数一般用tanh比较好
l1 = add_layer(xs, 8*8, 100, activation_function=tf.nn.tanh)
# 输出层因为最终是一个one hot的结构,因此输出的大小为10,激活函数用softmax
prediction = add_layer(l1, 100, 10, activation_function=tf.nn.softmax)

# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), axis=1))
# 在tensorboard中记录损失函数值
tf.summary.scalar(‘loss‘, cross_entropy)
# 用梯度下降优化器进行训练
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

sess = tf.Session()
merged = tf.summary.merge_all()
# 分别记录训练集的loss和测试集的loss值,目的是为了能够对比训练集和测试集中得拟合情况
train_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/train", sess.graph)
test_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/test", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(500):
    sess.run(train_step, feed_dict={xs:X_train, ys:y_train})
    if i % 50 == 0:
        # 分别用训练集和测试集数据获得损失函数值
        train_result = sess.run(merged, feed_dict={xs:X_train, ys: y_train})
        train_writer.add_summary(train_result, i)

        test_result = sess.run(merged, feed_dict={xs:X_test, ys: y_test})
        test_writer.add_summary(test_result, i)

输出结果

当我们运行了上面的代码后,会在D:/todel/data/tensorflow/目录下生成tensorboard收集的日志文件,我们可以在那个目录下输入:

最终在tensorboard中显示的图形为:

我们发现,训练集(蓝色的那条曲线)损失值要比测试集(黄色的那条曲线)小,这样就存在过拟合的情况。

消除过拟合

为了消除过拟合,我们采用dropout方式来进行。

首先设置一个保留概率的placeholder,这样在运行时可以通过参数来进行设置

# 设置保留概率,即我们要保留的结果所占比例,它作为一个placeholder,在run时传入, 当keep_prob=1的时候,相当于100%保留,也就是dropout没有起作用。
keep_prob = tf.placeholder(tf.float32)

然后在add_layer函数中调用dropout功能:

    # 调用dropout功能
    Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)

最后在训练时设置保留的概率,但在获得损失值时用全部的数据来进行获取:

for i in range(500):
    sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob: 0.7})
    if i % 50 == 0:
        # 分别用训练集和测试集数据获得损失函数值
        train_result = sess.run(merged, feed_dict={xs:X_train, ys: y_train, keep_prob:1})
        train_writer.add_summary(train_result, i)

        test_result = sess.run(merged, feed_dict={xs:X_test, ys: y_test, keep_prob:1})
        test_writer.add_summary(test_result, i)

这样全部代码为:

from sklearn.datasets import load_digits
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split

digits = load_digits()
X = digits.data
y = digits.target

# 把数值转换成one hot格式,例如:数字4就会被转换成:[0 0 0 0 1 0 0 0 0 0]
y = LabelBinarizer().fit_transform(y)
# 拆分数据集,以总量的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

import tensorflow as tf
def add_layer(inputs, in_size, out_size, activation_function=None):
    """
    添加层
    :param inputs: 输入数据
    :param in_size: 输入数据的列数
    :param out_size: 输出数据的列数
    :param activation_function: 激励函数
    :return:
    """

    # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # 偏置shape为1行out_size列
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    # 调用dropout功能
    Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)

    if activation_function is None:
        # 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
        outputs = Wx_plus_b
    else:
        # 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

# 定义placeholder
# 输入的手写数字大小为8*8单位的数据
xs = tf.placeholder(tf.float32, [None, 8*8])
# 输出值为one hot结构的数据
ys = tf.placeholder(tf.float32, [None, 10])
# 设置保留概率,即我们要保留的结果所占比例,它作为一个placeholder,在run时传入, 当keep_prob=1的时候,相当于100%保留,也就是dropout没有起作用。
keep_prob = tf.placeholder(tf.float32)

# 添加层
# 第一层输入为8*8单位的手写输入数字图像,输出设定为100个神经元的层(为了能够看出是overfitting的问题),激活函数一般用tanh比较好
l1 = add_layer(xs, 8*8, 100, activation_function=tf.nn.tanh)
# 输出层因为最终是一个one hot的结构,因此输出的大小为10,激活函数用softmax
prediction = add_layer(l1, 100, 10, activation_function=tf.nn.softmax)

# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), axis=1))
# 在tensorboard中记录损失函数值
tf.summary.scalar(‘loss‘, cross_entropy)
# 用梯度下降优化器进行训练
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

sess = tf.Session()
merged = tf.summary.merge_all()
# 分别记录训练集的loss和测试集的loss值,目的是为了能够对比训练集和测试集中得拟合情况
train_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/train", sess.graph)
test_writer = tf.summary.FileWriter("D:/todel/data/tensorflow/test", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(500):
    sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob: 0.7})
    if i % 50 == 0:
        # 分别用训练集和测试集数据获得损失函数值
        train_result = sess.run(merged, feed_dict={xs:X_train, ys: y_train, keep_prob:1})
        train_writer.add_summary(train_result, i)

        test_result = sess.run(merged, feed_dict={xs:X_test, ys: y_test, keep_prob:1})
        test_writer.add_summary(test_result, i)

运行后输出tensorboard图形为(记得把之前的文件或目录进行删除并运行tensorboard进行显示图形):

这样训练集和测试集的损失值就比较接近了。

原文地址:https://www.cnblogs.com/dreampursuer/p/8033142.html

时间: 2024-10-03 19:04:08

tensorflow用dropout解决over fitting-【老鱼学tensorflow】的相关文章

tensorflow分类-【老鱼学tensorflow】

前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是经济新闻等,这个结果是有一个全集的离散值,这类问题就是分类问题. 我有时会把回归问题看成是分类问题,比如对于房价值的预测,在实际的应用中,一般不需要把房价精确到元为单位的,比如对于均价,以上海房价为例,可以分为:5000-10万这样的一个范围段,并且以1000为单位就可以了,尽管这样分出了很多类,但

tensorflow 传入值-【老鱼学tensorflow】

上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值. 变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow系统运行时预先设置的值,然后在运行期间不会被改变,有点类似函数中的不可变的输入参数. 传入值同常量之间的差别是:常量在tensorflow系统运行之前就已经确定了的值,无法对其进行任何的改变. 而传入值或称为placeholder是在系统运行前需要对其进行设置相应的值. 我们来看一个例子,这个例子只

tensorflow例子-【老鱼学tensorflow】

本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律. 伪造数据 import numpy as np # 创建100个随机数 x_data = np.random.rand(100).astype(np.float32) # 创建最终要模拟的线性公式 y_data = x_data * 0.1 + 0.3 创建模型 在伪造数据之后,我们当作不知道这

tensorflow建造神经网络-【老鱼学tensorflow】

上次我们添加了一个add_layer函数,这次就要创建一个神经网络来预测/拟合相应的数据. 下面我们先来创建一下虚拟的数据,这个数据为二次曲线数据,但同时增加了一些噪点,其图像为: 相应的创建这些伪造数据的代码为: import numpy as np # 创建一列(相当于只有一个属性值),300行的x值,这里np.newaxis用于新建出列数据,使其shape为(300, 1) x_data = np.linspace(-1, 1, 300)[:,np.newaxis] # 增加噪点,噪点的均

为何学习matplotlib-【老鱼学matplotlib】

这次老鱼开始学习matplotlib了. 在上个pandas最后一篇博文中,我们已经看到了用matplotlib进行绘图的功能,这次更加系统性地多学习一下关于matplotlib的功能. 在matlab中,其拥有非常强大的显示图表的功能. 在python中,就提供了一个类似matlab软件中的画图库matplotlib,其基本上是模仿matlab中的画图函数. 官网中介绍的显示图表的例子见:http://matplotlib.org/gallery/index.html 要使用,就必须先进行安装

pandas基本介绍-【老鱼学pandas】

前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号以及实际的数据,而numpy就仅仅包含了实际的数据. 安装 直接输入: pip3 install pandas 最基本用法 import pandas as pd s = pd.Series([1, 2, 5, 6]) print(s) 输出: 0 1 1 2 2 5 3 6 dtype: int6

pandas设置值-【老鱼学pandas】

本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import numpy as np dates = pd.date_range("2017-01-08", periods=6) data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A",

pandas处理丢失数据-【老鱼学pandas】

假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd.date_range("2017-01-08", periods=6) data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C&

matplotlib坐标轴设置-【老鱼学matplotlib】

我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成x轴上的数据:从-3到3,总共有50个点 x = np.linspace(-1, 1, 50) # 定义一个线性方程 y1 = 2 * x + 1 # 定义一个二次方程 y2 = x ** 2 # 设置x轴的取值范围为:-1到2 plt.xlim(-1, 2)