蓝桥杯-最短路 (SPFA算法学习)

SPFA算法主要用来解决存在负边权的单源最短路情况(但不能有负环!!!)一个简单的方法判断是否有没有负环可以通过判断是否有一个节点是否频繁进出队列。

以下内容转自https://blog.csdn.net/xunalove/article/details/70045815

求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm。

SPFA算法是西南交通大学段凡丁于1994年发表的。

从名字我们就可以看出,这种算法在效率上一定有过人之处。

很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。有人称spfa算法是最短路的万能算法。

简洁起见,我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路。

我们用数组dis记录每个结点的最短路径估计值,可以用邻接矩阵或邻接表来存储图G,推荐使用邻接表。

spfa的算法思想(动态逼近法):

设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

松弛操作的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式。所谓对结点i,j进行松弛,就是判定是否dis[j]>dis[i]+w[i,j],如果该式成立则将dis[j]减小到dis[i]+w[i,j],否则不动。

下面举一个实例来说明SFFA算法是怎样进行的:


和广搜bfs的区别:

SPFA 在形式上和广度(宽度)优先搜索非常类似,不同的是bfs中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本身被改进(重新入队),于是再次用来改进其它的点,这样反复迭代下去。

算法的描述:

void  spfa(s);  //求单源点s到其它各顶点的最短距离
    for i=1 to n do { dis[i]=∞; vis[i]=false; }   //初始化每点到s的距离,不在队列
    dis[s]=0;  //将dis[源点]设为0
    vis[s]=true; //源点s入队列
    head=0; tail=1; q[tail]=s; //源点s入队, 头尾指针赋初值
    while head<tail do {
       head+1;  //队首出队
       v=q[head];  //队首结点v
       vis[v]=false;  //释放对v的标记,可以重新入队
       for 每条边(v,i)  //对于与队首v相连的每一条边
        if (dis[i]>dis[v]+a[v][i])  //如果不满足三角形性质
         dis[i] = dis[v] + a[v][i]   //松弛dis[i]
        if (vis[i]=false) {tail+1; q[tail]=i; vis[i]=true;} //不在队列,则加入队列
    } 

最短路径本身怎么输出?

在一个图中,我们仅仅知道结点A到结点E的最短路径长度,有时候意义不大。这个图如果是地图的模型的话,在算出最短路径长度后,我们总要说明“怎么走”才算真正解决了问题。如何在计算过程中记录下来最短路径是怎么走的,并在最后将它输出呢?

我们定义一个path[]数组,path[i]表示源点s到i的最短路程中,结点i之前的结点的编号(父结点),我们在借助结点u对结点v松弛的同时,标记下path[v]=u,记录的工作就完成了。

如何输出呢?我们记录的是每个点前面的点是什么,输出却要从最前面到后面输出,这很好办,递归就可以了。

模板题:

蓝桥杯-  算法训练 最短路

思路:spfa算法,因为题目告诉存在负边,不存在负环,而节点数n较大,因此不能使用Dijkstra算法和Floyd 算法。

这题因为数组不能开太大,所以邻接表用vector 存一个结构体变量。

 1 #include<iostream>
 2 #include<string.h>
 3 #include<string>
 4 #include<algorithm>
 5 #include<bits/stdc++.h>
 6 #define INF 1e9
 7 using namespace std;
 8 struct Node{
 9     int  num;
10     int load=INF;
11 };
12 vector < Node > v[20000+50];
13 //int load[20050][20050];
14 int len[20050];
15 bool vis[20050];
16 void SPFA(){
17     queue < int > q;
18     q.push(1);
19     memset(vis,0,sizeof(vis));
20     vis[1]=1;
21     while(!q.empty()){
22         int now=q.front();
23         q.pop();
24         vis[now]=0;
25         for(int i=0;i<v[now].size();i++){
26             int tmp=v[now][i].num;
27             int link=v[now][i].load;
28             if(len[tmp]>link+len[now]){
29                 len[tmp]=link+len[now];
30                 if(vis[tmp]==0){
31                     q.push(tmp);
32                     vis[tmp]=1;
33                 }
34             }
35         }
36     }
37     return ;
38 }
39 int main(){
40     for(int i=0;i<20030;i++){
41         len[i]=INF;
42     }
43     len[1]=0;
44     int n,m;
45     cin>>n>>m;
46     for(int i=0;i<m;i++){
47         int x,y,l;
48         Node tmp;
49         scanf("%d%d%d",&x,&y,&l);
50         tmp.num=y;
51         tmp.load=l;
52         v[x].push_back(tmp);
53
54     }
55     SPFA();
56     for(int i=2;i<=n;i++){
57         cout<<len[i]<<endl;
58     }
59     return 0;
60 }

原文地址:https://www.cnblogs.com/ISGuXing/p/8660563.html

时间: 2024-08-26 13:25:56

蓝桥杯-最短路 (SPFA算法学习)的相关文章

蓝桥杯 最短路 spfa

问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边. 输出格式 共n-1行,第i行表示1号点到i+1号点的最短路. 样例输入 3 3 1 2 -1 2 3 -1 3 1 2 样例输出 -1 -2 数据规模与约定 对于10%的数据,n = 2,m = 2. 对于30%的数据,n <= 5,m <= 1

蓝桥杯 最短路 道路和航路 SPFA算法

1.SPFA算法 算法训练 最短路 时间限制:1.0s   内存限制:256.0MB 锦囊1 使用最短路算法. 锦囊2 使用Dijkstra算法,此图的边数比点数的平方要少很多,因此应该使用带堆优化的Dijkstra. 问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边. 输出格式 共n-1行,第i行

最短路 spfa算法

问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边. 输出格式 共n-1行,第i行表示1号点到i+1号点的最短路. 样例输入 3 31 2 -12 3 -13 1 2 样例输出 -1-2 数据规模与约定 对于10%的数据,n = 2,m = 2. 对于30%的数据,n <= 5,m <= 10. 对

最短路SPFA 算法详解

最短路SPFA 算法详解 适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并

图论-单源最短路-SPFA算法

有关概念: 最短路问题:若在图中的每一条边都有对应的权值,求从一点到另一点之间权值和最小的路径 SPFA算法的功能是求固定起点到图中其余各点的的最短路(单源最短路径) 约定:图中不存在负权环,用邻接表存储有向图,di存放从起点到结点i的最短路,q为队列,保存待处理节点 思路: 首先指定起点入队,取当前队头结点u,沿每一条与u相连的边向外扩展,对该边所指向的结点v松弛(比较当前dv与当前du加此边长,更新最短路值dv,以及最短路径prev)如果v不在队列中且更新了最短路值,v进队,直至队列中没有元

转载:SPFA算法学习

转载地址:http://www.cnblogs.com/scau20110726/archive/2012/11/18/2776124.html 粗略讲讲SPFA算法的原理,SPFA算法是1994年西安交通大学段凡丁提出 是一种求单源最短路的算法 算法中需要用到的主要变量 int n;  //表示n个点,从1到n标号 int s,t;  //s为源点,t为终点 int d[N];  //d[i]表示源点s到点i的最短路 int p[N];  //记录路径(或者说记录前驱) queue <int>

HDU ACM 1535 Invitation Cards单点到多源最短路-&gt;SPFA算法

题意:有一个起始站点,从这里送n个学生去其余的n-1个站点邀请人们去CSS,然后再返回CSS,使得总的花费最小.注意每次只能送一个,返回时每次也只能送一个,而且每条路是单向的. 分析:这相当于一个有向图,我们只需两次调用SPFA算法即可,第一次求出初始站点(在这里是1)到其它所有站点的最小花费,然后相加:第二次将图反向建立,即所有的边反向,再求出初始站点(这里是1)到其它站点的最小费用,之后相加,第二步的图反向后按照第一次的求法就相当于从其它所有点到初始点的最小距离,因为算法只能求单点到多点而不

最短路 spfa 算法 &amp;&amp; 链式前向星存图

推荐博客  https://i.cnblogs.com/EditPosts.aspx?opt=1 http://blog.csdn.net/mcdonnell_douglas/article/details/54379641 spfa  自行百度 说的很详细 spfa 有很多实现的方法  dfs  队列  栈  都可以 时间复杂度也不稳定 不过一般情况下要比bellman快得多 #include <stdio.h> #include <math.h> #include <st

蓝桥杯 最短路

题目描述 问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边. 输出 输出格式 共n-1行,第i行表示1号点到i+1号点的最短路. 样例输入 3 3 1 2 -1 2 3 -1 3 1 2 样例输出 -1 -2 提示 数据规模与约定 对于10%的数据,n = 2,m = 2. 对于30%的数据,