Miller-Rabin素数检测算法

Description:

Goldbach‘s conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.

The actual verification of the Goldbach conjecture shows that even numbers below at least 1e14 can be expressed as a sum of two prime numbers.

Many times, there are more than one way to represent even numbers as two prime numbers.

For example, 18=5+13=7+11, 64=3+61=5+59=11+53=17+47=23+41, etc.

Now this problem is asking you to divide a postive even integer n (2<n<2^63) into two prime numbers.

Although a certain scope of the problem has not been strictly proved the correctness of Goldbach‘s conjecture, we still hope that you can solve it.

If you find that an even number of Goldbach conjectures are not true, then this question will be wrong, but we would like to congratulate you on solving this math problem that has plagued humanity for hundreds of years.

Input:

The first line of input is a T means the number of the cases.

Next T lines, each line is a postive even integer n (2<n<2^63).

Output:

The output is also T lines, each line is two number we asked for.

T is about 100.

本题答案不唯一,符合要求的答案均正确

样例输入

1
8

样例输出

3 5
题解:预处理1e6范围的素数,暴力这些素数ai 利用素数判定n-ai是否是素数预处理:线性筛法的模板(这可是我刚入门的收集的第一个模板

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+7;
bool check[maxn];
int prime[maxn];
int main(){
    int i,j,pos=0,flag;
    for(i=2;i<maxn;i++){
        if(!check[i]) prime[pos++]=i;
        for(j=0;j<pos&&i*prime[j]<maxn;j++){
            check[i*prime[j]]=true;
            if(i%prime[j]==0) break;
        }
    }

然后那个素数判断真的懵,那个素数判定真的不会,数那么大

查了别人的博客:

https://blog.csdn.net/zengaming/article/details/51867240

https://www.cnblogs.com/SinGuLaRiTy2001/p/6591414.html

先说几个理论基础:

1. 费马小定理:假如p是质数,a是整数,且a、p互质,那么a的(p-1)次方除以p的余数恒等于1,即:a^(p-1)≡1(mod p).

但是反过来却不一定成立,就是说,如果a、p互质,且a^(p-1)≡1(mod p),不能推出p是质数,比如Carmichael数。

2. 二次探测定理:如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1或x=p-1。

3. 模运算的规则:(a*b)%n=(a%n * b%n)%n

4. 快速积取模、快速幂取模:可以看看我之前写的一篇博客简单快速的算法

这些理论基础还没有好好想过。。

然后是算法的过程:

对于要判断的数n

1.先判断是不是2,是的话就返回true。

2.判断是不是小于2的,或合数,是的话就返回false。

3.令n-1=u*2^t,求出u,t,其中u是奇数。

4.随机取一个a,且1<a<n

/*根据费马小定理,如果a^(n-1)≡1(mod p)那么n就极有可能是素数,如果等式不成立,那肯定不是素数了

因为n-1=u*2^t,所以a^(n-1)=a^(u*2^t)=(a^u)^(2^t)。*/

5.所以我们令x=(a^u)%n

6.然后是t次循环,每次循环都让y=(x*x)%n,x=y,这样t次循环之后x=a^(u*2^t)=a^(n-1)了

7.因为循环的时候y=(x*x)%n,且x肯定是小于n的,正好可以用二次探测定理,

如果(x^2)%n==1,也就是y等于1的时候,假如n是素数,那么x==1||x==n-1,如果x!=1&&x!=n-1,那么n肯定不是素数了,返回false。

8.运行到这里的时候x=a^(n-1),根据费马小定理,x!=1的话,肯定不是素数了,返回false

9.因为Miller-Rabin得到的结果的正确率为 75%,所以要多次循环步骤4~8来提高正确率

10.循环多次之后还没返回,那么n肯定是素数了,返回true

下面是模板:

#include<cstdlib>
#include<ctime>
#include<cstdio>
using namespace std;
const int count=10;
int modular_exp(int a,int m,int n)
{
    if(m==0)
        return 1;
    if(m==1)
        return (a%n);
    long long w=modular_exp(a,m/2,n);
    w=w*w%n;
    if(m&1)
        w=w*a%n;
    return w;
}
bool Miller_Rabin(int n)
{
    if(n==2)
        return true;
    for(int i=0;i<count;i++)
    {
        int a=rand()%(n-2)+2;
        if(modular_exp(a,n,n)!=a)
            return false;
    }
    return true;
}
int main()
{
    srand(time(NULL));
    int n;
    scanf("%d",&n);
    if(Miller_Rabin(n))
        printf("Probably a prime.");
    else
        printf("A composite.");
    printf("\n");
    return 0;
}

原文地址:https://www.cnblogs.com/smallocean/p/8922691.html

时间: 2024-11-05 11:58:08

Miller-Rabin素数检测算法的相关文章

51nod 1106 质数检测(miller rabin 素数测试.)

1106 质数检测 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No". Input 第1行:一个数N,表示正整数的数量.(1 <= N <= 1000) 第2 - N + 1行:每行1个数(2 <= S[i] <= 10^9) Output 输出共N行,每行为 Yes 或 No. Input示例 5 2 3 4 5 6

POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

POJ2429_GCD &amp;amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

HDU1164_Eddy&amp;#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime

POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数测试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime

浅谈Miller-Rabin素数检测算法

浅谈Miller-Rabin素数检测 对于素数判断的操作,我们通常使用的是时间复杂度为\(O(\sqrt N)\)的试除法.按理说这种复杂度已经是较优秀的了,但是假如给定的需要判断的数极其之大,并且给定的时限不够以\(O(\sqrt N)\)的试除法来判断,该怎么办? 题出错了 想得美. 于是,今天的主角出场了:Miller-Rabin素数检测. Miller-Rabin素数检测算法用于在短时间内判断出一个数是否是质数,时间复杂度比试除法优秀,应该是\(O(T\times \log N)\)级别

51_1037最长循环节 (miller rabin算法 pollard rho算法 原根)

1037 最长的循环节 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 正整数k的倒数1/k,写为10进制的小数如果为无限循环小数,则存在一个循环节,求<=n的数中,倒数循环节长度最长的那个数. 1/6= 0.1(6) 循环节长度为1 1/7= 0.(142857) 循环节长度为6 1/9= 0.(1)  循环节长度为1 Input 输入n(10 <= n <= 10^18) Output 输出<=n的数中倒数循环节长度最长的