数学-线性代数导论-#10 线性相关性、向量空间的基和维数

线性代数导论-#10 线性相关性、向量空间的基和维数

这节课中,我们先讲了前面的课程中一直提及的线性相关性的具体定义,并以此为基础建立了向量空间的“基”和“维数”的定义,最后归纳为一种已知若干向量求其生成的空间的基和维数的系统方法。

首先是线性相关性的定义。

已知一个由n个向量构成的向量组【V1,V2,…,Vn】,如果存在n个系数【C1,C2,Cn】,使得各CiVi(i=1,2,3,…,n)的和为0,则称这组向量线性相关。反之,如不存在,则称其线性无关。

当然,这里要排除Ci均为0的情况。

对于这个定义,有两点注意之处:

1.线性相关性是整组向量的性质,不是某一个或几个向量与另一个向量之间的性质(以此表述为准,#1~#9中的表述可能有误);

2.系数中可以出现0。

诚然,线性相关的向量组内,存在一个向量能表示为其它若干向量的线性组合的情况,但是这并不意味着该情况是普遍情况。事实上,只有系数非0的向量,才可以通过移项,被表示为其它所有向量的线性组合。如果把线性相关表述为注意1中的“狭隘”形式,很可能带有一种先入为主的观念,干扰后续对于找向量组内的“基”(即剔除一些向量使得余下的向量线性无关)的正确认识。

线性相关性的定义可以用矩阵语言表述为:

对于一个由n个列向量构成的向量组,将每个向量均视为列向量后构成的m*n矩阵A的零空间中,若含有非零向量,则线性相关,反之线性无关。

零空间生成的基础是Ax=0,系数的组合所构成的向量生成零空间。矩阵语言下的说法实质上也就是判定Ax=0是否存在非零解。

运用矩阵的一些性质,我们可以把线性相关性进一步抽象为:

若r<n,则线性相关;若r=n,则线性无关。

根据#9中的知识,自由变量/自由列的个数为n-r,如果存在自由变量,我们可以通过将其置为非零值获得非零解。而一个列向量之所以能在消元的过程中变为自由列,就是因为该列向量可以表示为主元列的线性组合。

运用这些结论,请思考:为什么由三(n+1)个及以上二(n)元向量组成的向量组一定线性相关呢?

其次是基和维数的定义。

对于一个给定的向量空间(下简称为空间),如果存在一组向量同时满足:

1.线性无关;

2.能够生成整个空间。

那么称这组向量为该空间的基。

显然,根据空间生成的方式,空间的基是不唯一的。但是它们都具有一个共同点:所包含向量的个数相同。我们将这个固定的个数称为该空间的维数。

一个空间的基包含该空间全部的信息,可以通过各基向量乘上常系数C(比如零空间的表示方法)的形式表示空间。

基和维数的定义建立在“空间已给定”的基础上。所谓的“给定”,显然就是给出了该空间的基,其所包含的向量个数不多也不少,恰好等于维数。

如果已知若干向量,求其生成的空间的基和维数,该怎么办?

根据条件,这些向量是足矣生成对应的空间的。但是它们可以直接作为该空间的基吗?不一定,因为它们不一定线性无关。

所以我们要通过以下的方法剔除出那些对于生成空间“没有贡献”的向量,以达到余下的向量线性无关的效果:

1.将这些向量视为列向量写成矩阵的形式;

2.利用消元法确定主元列和自由列;

3.主元列所对应的原来的列向量(不是主元列,行变换过程中列空间发生了改变)即为原列空间的一组基。

根据这个方法,我们可以得到以下这些量之间神奇的等量关系:

矩阵A的r=A中主元/主元列的个数=列空间的维数,也即 dim C(A) = rank(A)。

回想我们在#8中求零空间的基的方法,请思考:对于一个m*n,秩为r的矩阵A,其零空间N(A)的维数是?

原文地址:https://www.cnblogs.com/samaritan-z/p/8438754.html

时间: 2024-10-13 10:42:24

数学-线性代数导论-#10 线性相关性、向量空间的基和维数的相关文章

数学-线性代数导论-#11 基于矩阵A生成的空间:列空间、行空间、零空间、左零空间

线性代数导论-#11 基于矩阵A生成的空间:列空间.行空间.零空间.左零空间 本节课介绍和进一步总结了如何求出基于一个m*n矩阵A生成的四种常见空间的维数和基: 列空间C(A),dim C(A) = r,基 = { U中主元列对应的原列向量 }: 行空间C(AT), dim C(AT) = r,基 = { U中的主元行 }: 1.为什么行空间不表示为R(A)而表示为C(AT)? 因为转置是矩阵的行与列之间的桥梁. 既然我们已经研究过列空间,通过转置,我们可以将行空间视为转置矩阵的列空间. 2.行

【线性代数】线性相关性、基和维数

一.线性相关性 什么情况下,向量X1,X2,--,Xn是线性无关的? 答:当向量X1,X2,--,Xn的线性组合(线性组合时系数不能全为0)不为零向量时,它们是线性无关的.即方程 不存在非零解. 对于一个矩阵A来说,当A总各列向量是线性无关时,则Ax=0的解只有0向量,即矩阵A的零空间只有零向量. 如果各列向量是相关的,则矩阵A的零空间中还存在一些其他的向量. 当矩阵A各列是线性无关的,则矩阵A各列都有主元,自由变量的个数为0. 二.空间的基 我们知道,矩阵各列的线性组合生成矩阵的列向量.但是,

数学-线性代数导论-#9 Ax=b的解:存在性、解法、解的数量、解的结构

线性代数导论-#9 Ax=b的解:存在性.解法.解的结构.解的数量 终于,我们在b为参数的一般情况下,开始分析Ax=b的解,包括标题中的四个方面. 首先是解的存在性. 从几何上说,当且仅当向量b位于列空间C(A)内时,Ax=b有解: 从代数上说,不能出现类似于"非0数=0"的矛盾方程: 1.这为我们判定是否有解提供了一个简便的途径: 根据Gauss消元法中对A和b进行行变换的同步性,行的相同线性组合其值一定相同. 所以加入A中各行可以通过简单的线性组合得到零行,而b进行相同线性组合的结

线性代数导论35——线性代数全总结(麻省理工公开课:线性代数)

课程介绍 "线性代数",同微积分一样,是高等数学中两大入门课程之一,不仅是一门非常好的数学课程,也是一门非常好的工具学科,在很多领域都有广泛的用途.本课程讲述了矩阵理论及线性代数的基本知识,侧重于那些与其他学科相关的内容,包括方程组.向量空间.行列式.特征值.相似矩阵及正定矩阵. [第1集] 方程组的几何解释    [第2集] 矩阵消元    [第3集] 乘法和逆矩阵    [第4集] A的LU分解    [第5集] 转置-置换-向量空间R    [第6集] 列空间和零空间    [第

数学 - 线性代数 - #12 向量空间的衍生:矩阵空间、微分方程的解、图

线性代数导论-#12 向量空间的衍生:矩阵空间.微分方程的解.图 凡是可以进行加法和数乘运算的对象,我们都可以将其视为向量. 凡是对加法和数乘封闭的集合,我们都可以将其视为空间. 分析空间时,我们着眼于其维度和基. 矩阵空间:把矩阵视为向量 矩阵空间的维度与基 矩阵空间的交集与"合集" 秩1矩阵:rank = 1 的矩阵 特性 用途 微分方程的解:把函数视为向量 图: 图的概念 Graph = { Nodes, Edges } Small World Graph 图的两个任意节点之间最

数学-线性代数-#6 线性代数-#6 向量空间、列空间、R^n与子空间

线性代数-#6 向量空间.列空间.Rn与子空间 让我们回想一下#1的内容,当我们在用向量的新视角看待线性方程组时,曾经提到以"向量的图像"作为代数学与几何学桥梁的想法. 而现在,让我们沿着这个想法深入探索下去,将其作为开启线性代数核心学习的钥匙. 引入新概念:向量空间. 什么是向量空间?我们把向量构成的空间叫做向量空间. 为了简化问题,我们先假定研究的对象是某个元素数为2或3的非零向量. 回归到向量的几何定义,一条有向的线段.这条线段会覆盖从起点到终点的区域.显然,这个区域不足以以&q

睡前数学一小时之线性筛素数:

睡前数学一小时之线性筛素数:1,朴素的筛素数算法:埃拉托斯特尼筛法.这是个简单再简单不过的一个素数的筛法.只是名字很拉风.这就告诉我们,往往东西不好这没什么,名字很拉风.别人也不会记住.hhhhh.这个的思路就是.每一个数都是由一个质数与和数(质数也可以)的积组成.这也是质数与和数的定义.而这个它这个筛发,就是当遇到一个质数的时候开始枚举,枚举[1,n]中间关于这个质数的倍数.每次都枚举,每次都将算出的这个数打上标记.而最后整个区间内的质数枚举完后,整个区间内的质数也就筛选出来了.这个很简单.时

数学图形(1.10) 双曲线

双曲线有点麻烦,因为它是两条线,而我的程序逻辑中对于渲染只是处理一条线,所以在图形中会有多余的线出现,这不太漂亮,容我以后解决.而且双曲线上的顶点容易过大,造成无效的浮点数,这也要特殊处理. 双曲线(东西开口) vertices = 12000 t = from 0 to (2*PI) a = rand2(0.1, 10) b = rand2(0.1, 10) x = a*sec(t) y = b*tan(t) x = limit(x, -50, 50) y = limit(y, -50, 50

《Linear Algebra and Its Applications》-线性相关性

这篇文章主要简单的记录所谓的“线性相关性”. 线性相关性的对象是向量R^n,对于向量方程,如果说x1v1 + x2v2 + …+xmvm = 0(其中xi是常数,vi是向量)有且仅有一个平凡解,那么我们称m个向量组成的集合{v1,v2,v3…vm}是一个线性相关集,反之,则称向量集合{v1,v2,v3,…vm}是线性无关的. 这个定义似乎显得有些唐突,我们反过来理解所谓的“线性相关”,即在一组非零解的情况下,我们将某个一个系数xi不为0的向量移到等式的另一侧,从这种形式来看,我们得到了向量vi关