bzoj 3238 [Ahoi2013]差异 后缀数组 + 单调栈

题目链接

Description

一个长度为\(n\)的字符串\(S\),令\(T_i\)表示它从第\(i\)个字符开始的后缀。求\[\sum_{1\leq i\leq j\leq n}len(T_i)+len(T_j)-2*lcp(T_i,T_j)\]其中,\(len(a)\)表示字符串\(a\)的长度,\(lcp(a,b)\)表示字符串\(a\)和字符串\(b\)的最长公共前缀。

\(2\leq n\leq 500000\)

思路

\(O(n^2)\)枚举显然是不可行的,应从 贡献 的角度取思考问题。

首先,每个后缀都被计算 \(n-1\) 次,如果不减去\(lcp\)的话,则答案为\[(1+2+...+n)*(n-1)=\frac{(n+1)*n*(n-1)}{2}\]

再来考虑\(lcp\),因为任意两个后缀的\(lcp\)的长度即为\(height\)数组的区间最小值,所以要减去的即为 所有区间的最小值之和

即考虑每个点向左向右可以延伸多远,所有区间最小值之和即为

\[\sum_{i=1}^{n}(r[i]-i+1)*(i-l[i]+1)*h[i]\]
// 注意,区间个数要用乘法原则。

\(l\)与\(r\)数组的计算用 单调栈 即可,如poj 2796 Feel Good.

Code

#include <bits/stdc++.h>
#define maxn 500010
using namespace std;
typedef long long LL;
int wa[maxn], wb[maxn], wv[maxn], wt[maxn], h[maxn], rk[maxn], sa[maxn], n, r[maxn], l[maxn], st[maxn];
char s[maxn];
bool cmp(int* r, int a, int b, int l) { return r[a] == r[b] && r[a+l] == r[b+l]; }
void init(int* r, int* sa, int n, int m) {
    int* x=wa, *y=wb, *t, i, j, p;
    for (i = 0; i < m; ++i) wt[i] = 0;
    for (i = 0; i < n; ++i) ++wt[x[i] = r[i]];
    for (i = 1; i < m; ++i) wt[i] += wt[i - 1];
    for (i = n-1; i >= 0; --i) sa[--wt[x[i]]] = i;
    for (j = 1, p = 1; p < n; j <<= 1, m = p) {
        for (p = 0, i = n-j; i < n; ++i) y[p++] = i;
        for (i = 0; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
        for (i = 0; i < n; ++i) wv[i] = x[y[i]];
        for (i = 0; i < m; ++i) wt[i] = 0;
        for (i = 0; i < n; ++i) ++wt[wv[i]];
        for (i = 1; i < m; ++i) wt[i] += wt[i - 1];
        for (i = n-1; i >= 0; --i) sa[--wt[wv[i]]] = y[i];
        t = x, x = y, y = t, x[sa[0]] = 0;
        for (p = 1, i = 1; i < n; ++i) x[sa[i]] = cmp(y, sa[i], sa[i-1], j) ? p - 1 : p++;
    }
    for (i = 0; i < n; ++i) rk[sa[i]] = i;
    int k = 0;
    for (i = 0; i < n - 1; h[rk[i++]] = k) {
        for (k = k ? --k : 0, j = sa[rk[i] - 1]; r[i+k] == r[j+k]; ++k);
    }
}
int main() {
    scanf("%s", s);
    int tot=0, m=0, len=strlen(s);
    for (int i = 0; i < len; ++i) m = max(r[tot++] = s[i], m); r[tot++] = 0;
    init(r, sa, tot, ++m);
    int top=0;
    LL ans = 1LL * (len+1) * len / 2 * (len-1);
    h[tot] = -1;
    for (int i = 2; i <= tot; ++i) {
        int ll = i;
        while (top && h[i]<h[st[top-1]]) {
            --top;
            ans -= 1LL * h[st[top]] * (i-st[top]) * (st[top]-(ll=l[st[top]])+1) * 2;
        }
        st[top++] = i; l[i] = ll;
    }
    printf("%lld\n", ans);
    return 0;
}

原文地址:https://www.cnblogs.com/kkkkahlua/p/8444227.html

时间: 2024-10-07 05:26:04

bzoj 3238 [Ahoi2013]差异 后缀数组 + 单调栈的相关文章

bzoj 3238: [Ahoi2013]差异 -- 后缀数组

3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 Source 后缀数组+单调栈水过... #include<map> #include<cmath> #include<

【bzoj3238】[Ahoi2013]差异 后缀数组+单调栈

题目描述 输入 一行,一个字符串S 输出 一行,一个整数,表示所求值 样例输入 cacao 样例输出 54 题解 后缀数组+单调栈,几乎同 bzoj3879 的后半部分. 我明显是做题做反了... 这里还是说一下这道题的做法. 先用后缀数组求出height. 然后由于有LCP(a,c)=min(LCP(a,b),LCP(b,c))(rank[a]<rank[b]<rank[c]),所以我们只需要知道排名相邻的两个后缀的LCP,而这就是height数组的定义. 转化为子问题:给出n个数,求所有子

bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 题解: 任意两个字符串的lcp是什么,就是如 a,b  那么若a==b 那么为len(a) 否则设sa[a]<sa[b] 那么为min(height[sa[a]+1-------sa[b]]) 1 #include<cstring> 2 #include<iostrea

BZOJ 3238 AHOI 2013 差异 后缀数组+单调栈

题目大意: 思路:一看各种后缀那就是后缀数组没跑了. 求出sa,height之后就可以乱搞了.对于height数组中的一个值,height[i]来说,这个值能够作为lcp值的作用域只在左边第一个比他小的位置到右边第一个比他小的位置.这个东西很明显可以倍增RMQ+二分/单调栈. 之后就是数学题了 Σlen[Ti] + len[Tj] = (len + 1) * len * (len - 1),之后吧所有求出来的Σ2 * lcp(Ti,Tj)减掉就是答案. 记得答案开long long CODE:

BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp

http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有两幅面孔呢). 看代码实现吧,不大容易口头解释,把加的和减的分开算就可以了,减去的通过倒着建sam(相当于建一棵后缀树),然后算每个len取的次数实现,注意树归中一些避免重复操作. 1 /********************************************************

BZOJ 3238 AHOI2013 差异 后缀自动机

题目大意:给定一个字符串,求Σ[1<=i<j<=n]|Ti|+|Tj|-2|LCP(Ti,Tj)| 前两项是可以O(1)求的 我们要求的就是LCP之和 对反串建立后缀自动机 那么parent指针连成的树就是后缀树 直接在后缀树上DP就行- - 对于每个节点统计所有子树两两right集合大小乘积之和乘上这个节点的深度即可 QY神在学校讲了一天的SAM... 现在我觉得我还是回去学大型建筑机械吧233- - #include <map> #include <vector&g

bzoj 3238: [Ahoi2013]差异

一看字符串 最长公共前缀,用后缀数组+单调栈搞搞就行啦.一定要注意long long 啊 1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<cstdlib> 5 #include<cmath> 6 #include<queue> 7 #include<algorithm> 8 #include<vector> 9 #de

HUID 5558 Alice&#39;s Classified Message 后缀数组+单调栈+二分

http://acm.hdu.edu.cn/showproblem.php?pid=5558 对于每个后缀suffix(i),想要在前面i - 1个suffix中找到一个pos,使得LCP最大.这样做O(n^2) 考虑到对于每一个suffix(i),最长的LCP肯定在和他排名相近的地方取得. 按排名大小顺序枚举位置,按位置维护一个递增的单调栈,对于每一个进栈的元素,要算一算栈内元素和他的LCP最大是多少. 如果不需要输出最小的下标,最大的直接是LCP(suffix(st[top]),  suff

[HAOI2016]找相同字符(后缀数组+单调栈)

[HAOI2016]找相同字符(后缀数组+单调栈) 题面 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. 分析 我们把两个字符串接在一起,中间加一个分隔符.如\(\text{AABB}\)和\(\text{BBAA}\)变成\(\text{AABB|BBAA}\).我们考虑两个相同字串,如\(\text{BB}\),它在新串中对应了两个后缀\(BB|BBAA\)和\(\text{BBAA}\)的LCP. 容易发现,LC