附录D——自动微分(Autodiff)

本文介绍了五种微分方式,最后两种才是自动微分。

前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数。

假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法。

1、手工求导

该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导。缺点是对于复杂函数容易出错。幸运的是,这一计算过程可由计算机帮我们完成,这就是符号微分。

2、符号微分(Symbolic Differentiation)

如图D-1所示,使用符号微分的方法,计算函数$g(x,y) = 5 + xy$的偏导数。该图左侧代表函数$g(x,y)$,右侧代表$g(x,y)$关于$x$的偏导数$\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1) = y$(同样的,可以求得$\frac{\partial g}{\partial y}$)。

图D-1 符号微分

该算法首先求叶子节点关于$x$的偏导数,然后沿着树向上,求得其他节点关于自变量的偏导数。这与手工求导所使用的规则是一样的。

如果函数复杂,该算法生成的树将十分庞大,性能不高。而且无法对很随意的代码求导,例如:

def my_func(a, b):
    z = 0
    for i in range(100):
        z = a * np.cos(z + i) + z * np.sin(b - i)
    return z 

3、数值微分(Numerical Differentiation)

这是根据导数的定义来求解的。函数$h(x)$在$x_0$点的导数为:

$h‘(x) = \lim_{\varepsilon \rightarrow 0} \frac{h(x_0 + \varepsilon) - h(x_0)}{\varepsilon}$

我们取一个很小的$\varepsilon$,带入公式进行计算即可。该方法所得结果不够精确,参数过多时计算量也比较大。但是计算起来很简单,可用于校验手工算出的导数是否正确。

如果有1000个参数,至少需要调用$h(x)$1001词,来求得所有偏导数。

4、前向自动微分(Forward-Mode Autodiff)

该算法依赖一个对偶数(dual numbers,这让我想起来oracle的虚表。难度dual可以表示虚无的意思?) $\varepsilon$,满足$\varepsilon^2 = 0$但是$\varepsilon \neq 0$(姑且理解为一阶无穷小吧)。

由于$\varepsilon$是无穷小,因此满足$h(a + b \varepsilon) = h(a) + b \times h‘(a)\varepsilon$。因此,算出$h(a + \varepsilon) $可以同时得到$h(a)$和$h‘(a)$,如图D-2所示。

图D-2 前向自动微分

上图值计算了$\frac{\partial f}{\partial x}(3,4)$,同样的方法可以算的$\frac{\partial f}{\partial y}(3,4)$。

如果有1000个参数,需要遍历上图1000次,来求得所有偏导数。

5、反向自动微分(Reverse-Mode Autodiff)

这是TensorFlow所采用的自动微分算法。如图D-3所示,该算法首先前向(也就是从输入到输出)计算每个节点的值,然后反向(从输出到输入)计算所有的偏导数。

图D-3 反向自动微分

反向计算时应用链式求导法则:

$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial n_i} \times \frac{\partial n_i}{\partial x}$

由于$n_7$就是输出节点,$f = n_7$,因此$\frac{\partial f}{\partial n_7} = 1$。

该算法强大且精确,尤其是输入很多,输出很少时。假如函数有10个输出(不管输入是1千,2万还是更多),求得所有偏导数需要对上图遍历11次。

各个算法比较:

原文地址:https://www.cnblogs.com/royhoo/p/Autodiff.html

时间: 2024-10-29 16:11:38

附录D——自动微分(Autodiff)的相关文章

ND4J自动微分

一.前言 ND4J从beta2开始就开始支持自动微分,不过直到beta4版本为止,自动微分还只支持CPU,GPU版本将在后续版本中实现. 本篇博客中,我们将用ND4J来构建一个函数,利用ND4J SameDiff构建函数求函数值和求函数每个变量的偏微分值. 二.构建函数 构建函数和分别手动求偏导数 给定一个点(2,3)手动求函数值和偏导,计算如下: f=2+3*4+3=17,f对x的偏导:1+2*2*3=13,f对y的偏导:4+1=5 三.通过ND4J自动微分来求 完整代码 package or

(转)自动微分(Automatic Differentiation)简介——tensorflow核心原理

现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新.手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题.接下来我们将一起学习这个优雅的技术:-).本文主要来源于陈天奇在华盛顿任教的课程CSE599G1: Deep Lea

PyTorch自动微分基本原理

序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出现的原因,当前最流行的深度学习框架如PyTorch.Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作就能神奇般地自动计算出复杂函数的梯度. PyTorch的autograd简介 Tensor是PyTorch实现多维数组计算和自动微分的关键数据结构.一方面,它类似于numpy的nd

Autograd:自动微分

Autograd 1.深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能:在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程. 2.autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作:Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度. 3.Variable主要包含三个属性: data

如何计算微分

Ceres为google开源非线性优化库. 计算微分方法 符号微分  Analytic Derivative 数值微分  Numeric Derivative Forward Difference Central Difference Ridders’ Method 自动微分Automatic Derivative 自动微分可以精确快速的算出微分值. 1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyri

【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分

在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的框架,这意味着你的后向传播是由你的代码运行方式来定义的,并且每一个迭代都可以是不同的. 下面,让我们使用一些更简单的术语和例子来解释这个问题. 0x01 变量(Variable) autograd.Variable是autograd包的核心类,它封装了一个张量,并支持几乎所有在该张量上定义的操作.一旦完

python中几种自动微分库

简单介绍下python的几个自动求导工具,tangent.autograd.sympy: 在各种机器学习.深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法.数值微分法.符号微分法.自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架: sympy 强大的科学计算库,使用的是符号微分,通过生成符号表达式进行求导:求得的导数不一定为最简的,当函数较为复杂时所生成的表达式树异常复杂: autograd自动微分先将符号微分用于基本的算子,带入数值并保存中间结

MXNet设计笔记之:深度学习的编程模式比较

市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到什么经验. 我们主要关注编程模式本身,而不是其具体实现.因此,本文并不是一篇关于深度学习库相互比较的文章.相反,我们根据它们所提供的接口,将这些函数库分为几大类,然后讨论各类形式的接口将会对深度学习编程的性能和灵活性产生什么影响.本文的讨论可能不只针对于深度学习,但我们会采用深度学习的例子来分析和优

Sklearn 与 TensorFlow 机器学习实用指南(补档)

协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 ApacheCN - 机器学习交流群 629470233 ApacheCN 学习资源 利用 Python 进行数据分析 第二版 PDF格式 EPUB格式 MOBI格式 英文仓库 中文仓库 目录结构 Sklearn 与 TensorFlow 机器学习实用指南 零.前言 一.机器学习概览 二.一个完整的机器学习项目 三.分类 四.训练模型 五.支持向量机 六.决策树 七.集成学习和随机森林 八.