不同版本CUDA编程的问题

1 无法装上CUDA的toolkit

卸载所有的NVIDIA相关的app,包括NVIDIA的显卡驱动,然后重装。

2之前的文件打不开,one or more projects in the solution were not loaded correctly. please see the output window for details.

要先配置和用cuda编程在vs中需要的设置,并且要注意包括cuda的很多头文件。

可以新建一个项目,然后将xx.cu里头的内容拷贝进去。

时间: 2024-11-06 01:50:45

不同版本CUDA编程的问题的相关文章

CUDA编程(二) CUDA初始化与核函数

CUDA编程(二) CUDA初始化与核函数 CUDA初始化 在上一次中已经说过了,CUDA安装成功之后,新建一个工程还是十分简单的,直接在新建项目的时候选择NVIDIA CUDA项目就可以了,我们先新建一个MyCudaTest 工程,删掉自带的示例kernel.cu,然后新建项,新建一个CUDA C/C++ File ,我们首先看一下如何初始化CUDA,因此我命名为InitCuda.cu 首先我们要使用CUDA的RunTime API 所以 我们需要include cuda_runtime.h

CUDA编程

目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. 运行时API 5.4.1. 初始化 5.4.2. 设备管理 5.4.3. 存储器管理 5.4.3.1. 共享存储器 5.4.3.2. 常量存储器 5.4.3.3. 线性存储器 5.4.3.4. CUDA数组 5.4.4. 流管理 5.4.5. 事件管理 5.4.6. 纹理参考管理 5.4.6.1.

Ubuntu12.04 之 CUDA 编程 (二) ~~~ GPU 程序加速

关于 Ubuntu12.04 下 CUDA5.5 的安装请参看如下链接 Ubuntu-12.04 安装 CUDA-5.5 关于 Ubuntu12.04 下 CUDA5.5 程序的运行请参看如下链接 Ubuntu12.04 之 CUDA 编程 (一) --- GPU 运行程序 1.程序的并行化 前一篇文章讲到了如何利用 CUDA5.5 在 GPU 中运行一个程序.通过程序的运行,我们看到了 GPU 确实可以作为一个运算器,但是,我们在前面的例子中并没有正真的发挥 GPU 并行处理程序的能力,也就是

CUDA编程之快速入门

CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大家比较全面地了解CUDA编程最重要的知识点,做到快速入门: GPU架构特点 CUDA线程模型

CUDA编程之快速入门【转】

https://www.cnblogs.com/skyfsm/p/9673960.html CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大

win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0)

win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0)  用vs 2015打开 编译Release和Debug版本 看网上那个例子里面 工程里面有是三个文件夹 include(包含mxnet,dmlc,mshadow的include目录) lib(包含libmxnet.dll, libmxnet.lib,把用vs编译好的放过去) python(包含一个mxnet,setup.py, 以及buil

CUDA编程常见问题 转

http://blog.csdn.net/yutianzuijin/article/details/8147912 分类: 编程语言2012-11-05 10:55 2521人阅读 评论(0) 收藏 举报 cudaGPU 最近初试cuda编程,作为一个新手,遇到了各种各样的问题,然后花费了大量时间解决这些匪夷所思的问题.为了避免后来人重蹈覆辙,现把自己遇到的问题总结如下. (一).cudaMalloc 初次使用该函数,感觉没有什么困难,和c语言的malloc类似.但是在具体应用中却出了一个很难找

CUDA编程(五)关注内存的存取模式

CUDA编程(五) 关注内存的存取模式 上一篇博客我们使用Thread完成了简单的并行加速,虽然我们的程序运行速度有了50甚至上百倍的提升,但是根据内存带宽来评估的话我们的程序还远远不够, 除了通过Block继续提高线程数量来优化性能,这次想给大家先介绍一个访存方面非常重要的优化,同样可以大幅提高程序的性能~ 什么样的存取模式是高效的? 大家知道一般显卡上的内存是 DRAM,因此最有效率的存取方式,是以连续的方式存取,单纯说连续存取可能比较抽象,我们还是通过例子来看这个问题. 之前的程序,大家可

cuda编程:关于共享内存(shared memory)和存储体(bank)的事实和疑惑

关于共享内存(shared memory)和存储体(bank)的事实和疑惑 主要是在研究访问共享内存会产生bank conflict时,自己产生的疑惑.对于这点疑惑,网上都没有相关描述, 不管是国内还是国外的网上资料.貌似大家都是当作一个事实,一个公理,而没有对其仔细研究.还是我自己才学疏浅,不知道某些知识. 比如下面这篇讲解bank conflict的文章. http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-share