爬虫总结2

5.验证码的处理

碰到验证码咋办?这里分两种情况处理:

  • google那种验证码,凉拌
  • 简单的验证码:字符个数有限,只使用了简单的平移或旋转加噪音而没有扭曲的,这种还是有可能可以处理的,一般思路是旋转的转回来,噪音去掉,然 后划分单个字符,划分好了以后再通过特征提取的方法(例如PCA)降维并生成特征库,然后把验证码和特征库进行比较。这个比较复杂,一篇博文是说不完的, 这里就不展开了,具体做法请弄本相关教科书好好研究一下。
  • 事实上有些验证码还是很弱的,这里就不点名了,反正我通过2的方法提取过准确度非常高的验证码,所以2事实上是可行的。

6 gzip/deflate支持

现在的网页普遍支持gzip压缩,这往往可以解决大量传输时间,以VeryCD的主页为例,未压缩版本247K,压缩了以后45K,为原来的1/5。这就意味着抓取速度会快5倍。

然而python的urllib/urllib2默认都不支持压缩,要返回压缩格式,必须在request的header里面写明’accept- encoding’,然后读取response后更要检查header查看是否有’content-encoding’一项来判断是否需要解码,很繁琐琐 碎。如何让urllib2自动支持gzip, defalte呢?

其实可以继承BaseHanlder类,然后build_opener的方式来处理:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

import urllib2

from gzip import GzipFile

from StringIO import StringIO

class ContentEncodingProcessor(urllib2.BaseHandler):

  """A handler to add gzip capabilities to urllib2 requests """

 

  # add headers to requests

  def http_request(self, req):

    req.add_header("Accept-Encoding", "gzip, deflate")

    return req

 

  # decode

  def http_response(self, req, resp):

    old_resp = resp

    # gzip

    if resp.headers.get("content-encoding") == "gzip":

        gz = GzipFile(

                    fileobj=StringIO(resp.read()),

                    mode="r"

                  )

        resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code)

        resp.msg = old_resp.msg

    # deflate

    if resp.headers.get("content-encoding") == "deflate":

        gz = StringIO( deflate(resp.read()) )

        resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code)  # ‘class to add info() and

        resp.msg = old_resp.msg

    return resp

 

# deflate support

import zlib

def deflate(data):   # zlib only provides the zlib compress format, not the deflate format;

  try:               # so on top of all there‘s this workaround:

    return zlib.decompress(data, -zlib.MAX_WBITS)

  except zlib.error:

    return zlib.decompress(data)

然后就简单了,

encoding_support = ContentEncodingProcessor
 #直接用opener打开网页,如果服务器支持gzip/defalte则自动解压缩 content = opener.open(url).read() opener = urllib2.build_opener( encoding_support, urllib2.HTTPHandler )  

7. 更方便地多线程

总结一文的确提及了一个简单的多线程模板,但是那个东东真正应用到程序里面去只会让程序变得支离破碎,不堪入目。在怎么更方便地进行多线程方面我也动了一番脑筋。先想想怎么进行多线程调用最方便呢?

1、用twisted进行异步I/O抓取

事实上更高效的抓取并非一定要用多线程,也可以使用异步I/O法:直接用twisted的getPage方法,然后分别加上异步I/O结束时的callback和errback方法即可。例如可以这么干:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

from twisted.web.client import getPage

from twisted.internet import reactor

 

links = [ ‘http://www.verycd.com/topics/%d/‘%i for i in range(5420,5430) ]

 

def parse_page(data,url):

    print len(data),url

 

def fetch_error(error,url):

    print error.getErrorMessage(),url

 

# 批量抓取链接

for url in links:

    getPage(url,timeout=5) \

        .addCallback(parse_page,url) \ #成功则调用parse_page方法

        .addErrback(fetch_error,url)     #失败则调用fetch_error方法

 

reactor.callLater(5, reactor.stop) #5秒钟后通知reactor结束程序

reactor.run()

twisted人如其名,写的代码实在是太扭曲了,非正常人所能接受,虽然这个简单的例子看上去还好;每次写twisted的程序整个人都扭曲了,累得不得了,文档等于没有,必须得看源码才知道怎么整,唉不提了。

如果要支持gzip/deflate,甚至做一些登陆的扩展,就得为twisted写个新的HTTPClientFactory类诸如此类,我这眉头真是大皱,遂放弃。有毅力者请自行尝试。

这篇讲怎么用twisted来进行批量网址处理的文章不错,由浅入深,深入浅出,可以一看。

2、设计一个简单的多线程抓取类

还是觉得在urllib之类python“本土”的东东里面折腾起来更舒服。试想一下,如果有个Fetcher类,你可以这么调用

?


1

2

3

4

5

6

f = Fetcher(threads=10) #设定下载线程数为10

for url in urls:

    f.push(url)  #把所有url推入下载队列

while f.taskleft(): #若还有未完成下载的线程

    content = f.pop()  #从下载完成队列中取出结果

    do_with(content) # 处理content内容

这 么个多线程调用简单明了,那么就这么设计吧,首先要有两个队列,用Queue搞定,多线程的基本架构也和“技巧总结”一文类似,push方法和pop方法 都比较好处理,都是直接用Queue的方法,taskleft则是如果有“正在运行的任务”或者”队列中的任务”则为是,也好办,于是代码如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

import urllib2

from threading import Thread,Lock

from Queue import Queue

import time

 

class Fetcher:

    def __init__(self,threads):

        self.opener = urllib2.build_opener(urllib2.HTTPHandler)

        self.lock = Lock() #线程锁

        self.q_req = Queue() #任务队列

        self.q_ans = Queue() #完成队列

        self.threads = threads

        for i in range(threads):

            t = Thread(target=self.threadget)

            t.setDaemon(True)

            t.start()

        self.running = 0

 

    def __del__(self): #解构时需等待两个队列完成

        time.sleep(0.5)

        self.q_req.join()

        self.q_ans.join()

 

    def taskleft(self):

        return self.q_req.qsize()+self.q_ans.qsize()+self.running

 

    def push(self,req):

        self.q_req.put(req)

 

    def pop(self):

        return self.q_ans.get()

 

    def threadget(self):

        while True:

            req = self.q_req.get()

            with self.lock: #要保证该操作的原子性,进入critical area

                self.running += 1

            try:

                ans = self.opener.open(req).read()

            except Exception, what:

                ans = ‘‘

                print what

            self.q_ans.put((req,ans))

            with self.lock:

                self.running -= 1

            self.q_req.task_done()

            time.sleep(0.1) # don‘t spam

 

if __name__ == "__main__":

    links = [ ‘http://www.verycd.com/topics/%d/‘%i for i in range(5420,5430) ]

    f = Fetcher(threads=10)

    for url in links:

        f.push(url)

    while f.taskleft():

        url,content = f.pop()

        print url,len(content)

8. 一些琐碎的经验

1、连接池:

opener.open和urllib2.urlopen一样,都会新建一个http请求。通常情况下这不是什么问题,因为线性环境下,一秒钟可能 也就新生成一个请求;然而在多线程环境下,每秒钟可以是几十上百个请求,这么干只要几分钟,正常的有理智的服务器一定会封禁你的。

然而在正常的html请求时,保持同时和服务器几十个连接又是很正常的一件事,所以完全可以手动维护一个HttpConnection的池,然后每次抓取时从连接池里面选连接进行连接即可。

这里有一个取巧的方法,就是利用squid做代理服务器来进行抓取,则squid会自动为你维护连接池,还附带数据缓存功能,而且squid本来就是我每个服务器上面必装的东东,何必再自找麻烦写连接池呢。

2、设定线程的栈大小

栈大小的设定将非常显著地影响python的内存占用,python多线程不设置这个值会导致程序占用大量内存,这对openvz的vps来说非常致命。stack_size必须大于32768,实际上应该总要32768*2以上

from threading import stack_size
stack_size(32768*16)

3、设置失败后自动重试

def get(self,req,retries=3): try:
  response = self.opener.open(req) data = response.read()  except Exception , what: print what,req if retries>0: return self.get(req,retries-1) else: print ‘GET Failed‘,req return ‘‘ return data

4、设置超时

import socket socket.setdefaulttimeout(10) #设置10秒后连接超时

5、登陆

登陆更加简化了,首先build_opener中要加入cookie支持,参考“总结”一文;如要登陆VeryCD,给Fetcher新增一个空方法login,并在init()中调用,然后继承Fetcher类并override login方法:

?


1

2

3

4

5

6

7

8

9

def login(self,username,password):

    import urllib

    data=urllib.urlencode({‘username‘:username,

                           ‘password‘:password,

                           ‘continue‘:‘http://www.verycd.com/‘,

                           ‘login_submit‘:u‘登录‘.encode(‘utf-8‘),

                           ‘save_cookie‘:1,})

    url = ‘http://www.verycd.com/signin‘

    self.opener.open(url,data).read()

于是在Fetcher初始化时便会自动登录VeryCD网站。

9. 总结

如此,把上述所有小技巧都糅合起来就和我目前的私藏最终版的Fetcher类相差不远了,它支持多线程,gzip/deflate压缩,超时设置,自动重试,设置栈大小,自动登录等功能;代码简单,使用方便,性能也不俗,可谓居家旅行,杀人放火,咳咳,之必备工具。

之所以说和最终版差得不远,是因为最终版还有一个保留功能“马甲术”:多代理自动选择。看起来好像仅仅是一个random.choice的区别,其实包含了代理获取,代理验证,代理测速等诸多环节,这就是另一个故事了。

时间: 2024-11-04 11:39:58

爬虫总结2的相关文章

开始我的Python爬虫学习之路

因为工作需要经常收集一些数据,我就想通过学爬虫来实现自动化完成比较重复的任务. 目前我Python的状况,跟着敲了几个教程,也算是懂点基础,具体比较深入的知识,是打算从做项目中慢慢去了解学习. 我是觉得如果一开始就钻细节的话,是很容易受到打击而放弃的,做点小项目让自己获得点成就感路才更容易更有信心走下去. 反正遇到不懂的就多查多问就对了. 知乎上看了很多关于入门Python爬虫的问答,给自己总结出了大概的学习方向. 基础: HTML&CSS,JOSN,HTTP协议(这些要了解,不太需要精通) R

爬虫难点分析

难点分析 1.网站采取反爬策略 2.网站模板定期变动 3.网站url抓取失败 4.网站频繁抓取ip被封 1.网站采取反爬策略 >网站默认对方正常访问的方式是浏览器访问而不是代码访问,为了防止对方使用大规模服务器进行爬虫从而导致自身服务器承受过大的压力,通常网站会采取反爬策略 根据这一特性,我们用代码模拟实现浏览器访问 2.网站模板定期变动-解决方案 >标签变动,比如<div>变动,那么我们不能把代码给写死了 (1)不同配置文件配置不同网站的模板规则 (2)数据库存储不同网站的模板规

爬虫——模拟点击动态页面

动态页面的模拟点击: 以斗鱼直播为例:http://www.douyu.com/directory/all 爬取每页的房间名.直播类型.主播名称.在线人数等数据,然后模拟点击下一页,继续爬取 #!/usr/bin/python3 # -*- conding:utf-8 -*- __author__ = 'mayi' """ 动态页面的模拟点击: 模拟点击斗鱼直播:http://www.douyu.com/directory/all 爬取每页房间名.直播类型.主播名称.在线人数

第三百二十三节,web爬虫,scrapy模块以及相关依赖模块安装

第三百二十三节,web爬虫,scrapy模块以及相关依赖模块安装 当前环境python3.5 ,windows10系统 Linux系统安装 在线安装,会自动安装scrapy模块以及相关依赖模块 pip install Scrapy 手动源码安装,比较麻烦要自己手动安装scrapy模块以及依赖模块 安装以下模块 1.lxml-3.8.0.tar.gz (XML处理库) 2.Twisted-17.5.0.tar.bz2 (用Python编写的异步网络框架) 3.Scrapy-1.4.0.tar.gz

Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗?

最近正在学习Python中的异步编程,看了一些博客后做了一些小测验:对比asyncio+aiohttp的爬虫和asyncio+aiohttp+concurrent.futures(线程池/进程池)在效率中的差异,注释:在爬虫中我几乎没有使用任何计算性任务,为了探测异步的性能,全部都只是做了网络IO请求,就是说aiohttp把网页get完就程序就done了. 结果发现前者的效率比后者还要高.我询问了另外一位博主,(提供代码的博主没回我信息),他说使用concurrent.futures的话因为我全

Python爬虫从入门到放弃(十一)之 Scrapy框架整体的一个了解

这里是通过爬取伯乐在线的全部文章为例子,让自己先对scrapy进行一个整理的理解 该例子中的详细代码会放到我的github地址:https://github.com/pythonsite/spider/tree/master/jobboleSpider 注:这个文章并不会对详细的用法进行讲解,是为了让对scrapy各个功能有个了解,建立整体的印象. 在学习Scrapy框架之前,我们先通过一个实际的爬虫例子来理解,后面我们会对每个功能进行详细的理解.这里的例子是爬取http://blog.jobb

简谈-网络爬虫的几种常见类型

众所周知,网络爬虫(或称为网络爬虫.网络蜘蛛.机器人)是搜索引擎最上游的一个模块,是负责搜索引擎内容索引的第一关. 很多人为了提高自己网站的索引量,都是去网上随便找一些爬虫工具来使用.但是很多人不知道,这些抓取网站的小爬虫是有各种各样的不同性格的. 常见的优秀网络爬虫有以下几种类型: 1.批量型网络爬虫:限制抓取的属性,包括抓取范围.特定目标.限制抓取时间.限制数据量以及限制抓取页面,总之明显的特征就是受限: 2.增量型网络爬虫(通用爬虫):与前者相反,没有固定的限制,无休无止直到抓完所有数据.

python爬虫 模拟登陆校园网-初级

最近跟同学学习爬虫的时候看到网上有个帖子,好像是山大校园网不稳定,用py做了个模拟登陆很有趣,于是我走上了一条不归路..... 先上一张校园网截图 首先弄清一下模拟登陆的原理: 1:服务器判定浏览器登录使用浏览器标识,需要模拟登陆 2: 需要post账号,密码,以及学校id python走起,我用的2.7版本,用notepad++写的,绑定python可以直接运行 由于是模拟网页登陆,需要导入urllib urllib2 cookielib库,前两个有与网页直接的接口,cookielib就是用来

爬虫的本质

w机器化的人,超越人. [初码干货]关于.NET玩爬虫这些事 - 初码 - 博客园 http://www.cnblogs.com/printhelloworld/p/6354085.htm "爬虫的本质是对目标WebServer页面行为和业务流程的精准分析,是对HTTP的深刻理解,是对正则.多线程等周边技术以及软件工程的灵活运用"

由爬虫引发的思考

前言 花了两天时间写一个简单的爬虫程序.目前所用的技术十分简单.就是获得目标页面的html文档内容,然后解析其中有用的内容.既没有实现模拟登陆,也没有任何防止反爬虫的措施,甚至没有使用多线程.不过在其中遇到的问题还是引发了我很多的思考与问题,比如爬虫的合法性问题以及爬虫的危害等.于是写下这篇文章记录一下.由于本人经验有限,引用参考了大量文章,有问题请指出. 爬虫的作用与危害 爬虫的作用 网络爬虫(Web Crawler),又称网络蜘蛛(Web Spider)或网络机器人(Web Robot),是