组合数学及其应用——容斥原理

容斥原理在集合论、概率论、组合数学中都常常出现,它是下面一个结论的推广。

这是因为,我们分别减|A|、|B|的时候,把|AB|减掉了两次,因此这里应该再加一次。

它的推广形式就是容斥定理。

在给出证明之前,我们很有必要充分的理解一下这个公式的内涵。我们基于S集合上的一系列离散元素上讨论不满足m个性质的对象(元素)个数。我们假想某一种性质的具体表现为:一根丝带,圈住了满足这一条性质的所有元素(本质上就是画Venn图),现在我们想要求的就是没有被特定的m条丝带圈出的元素个数。

这个定理再利用德摩根律能够做出等价变化,它在计数、反演公式等方面发挥着重要作用。

时间: 2024-11-09 16:20:03

组合数学及其应用——容斥原理的相关文章

数论 - 组合数学 --- 1的个数

1的个数 Mean: 输入一个n,计算小于10^n的正整数中含有1的数的个数. analyse: 这题是一道组合数学课后思考题. 基本思路:  组合数学乘法原则 + 容斥原理 n位数中,每位可选:{0,1,2,3,4,5,6,7,8,9},所以共有10^n种,其中要除掉每位都为0的情况,所以要减一. 其中每位上不选1的情况为:{0,2,3,4,5,6,7,8,9},所以共有9^n中,同样要除掉全部为0的情况. Time complexity:O(n) Source code: //Memory

算法分类合集(转)

ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列双端队列可并堆左偏堆 二叉查找树Treap伸展树 并查集集合计数问题二分图的识别 平衡二叉树 二叉排序树 线段树一维线段树二维线段树 树状数组一维树状数组N维树状数组 字典树 后缀数组,后缀树 块状链表 哈夫曼树 桶,跳跃表 Trie树(静态建树.动态建树) AC自动机 LCA和RMQ问题 KMP算法 图论 基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分量Tarjan算法双连通分量强连通分支及其缩点图的割边和

【转】计算几何题目推荐

打算转下来好好做计算几何了. 原文地址:http://blog.sina.com.cn/s/blog_49c5866c0100f3om.html 其实也谈不上推荐,只是自己做过的题目而已,甚至有的题目尚未AC,让在挣扎中.之所以推荐计算几何题,是因为,本人感觉ACM各种算法中计算几何算是比较实际的算法,在很多领域有着重要的用途计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行

[转] POJ几何分类

转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面大部分是模板.如果代码一片混乱,那么会严重影响做题正确率.4.注意精度控制.5.能用整数的地方尽量用整数,要想到扩大数据的方法(扩大一倍,或扩大sqrt2).因为整数不用考虑浮点误差,而且运算比浮点快. 一.点

ACM算法目录

数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一维线段树 二维线段树 •树状数组 一维树状数组 N维树状数组 •字典树 •后缀数组,后缀树 •块状链表 •哈夫曼树 •桶,跳跃表 •Trie树(静态建树.动态建树) •AC自动机 •LCA和RMQ问题 •KMP算法 ******************************************

ACM所有算法

ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维线段树 树状数组 一维树状数组 N维树状数组 字典树 后缀数组,后缀树 块状链表 哈夫曼树 桶,跳跃表 Trie树(静态建树.动态建树) AC自动机 LCA和RMQ问题 KMP算法 图论 基本图算法图 广度优先遍历 深度优先遍历 拓扑排序 割边割点 强连通分量 Tarjan算法 双

算法分类合集

ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列双端队列可并堆左偏堆 二叉查找树Treap伸展树 并查集集合计数问题二分图的识别 平衡二叉树 二叉排序树 线段树一维线段树二维线段树 树状数组一维树状数组N维树状数组 字典树 后缀数组,后缀树 块状链表 哈夫曼树 桶,跳跃表 Trie树(静态建树.动态建树) AC自动机 LCA和RMQ问题 KMP算法 图论 基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分量Tarjan算法双连通分量强连通分支及其缩点图的割边和

数学相关,先记账,再慢慢还……

一.数论 1.1 费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p).即:假如a是整数,p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1. 1.2 中国剩余定理 1.3 欧拉函数在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等. 例如φ(8)=4,因为1,3,5,7均和8互质. 从欧拉函

HDU 1695 GCD (数论-整数和素数,组合数学-容斥原理)

GCD Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output t