POJ3070:Fibonacci(矩阵快速幂模板题)

http://poj.org/problem?id=3070

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <cstdio>
#include <algorithm>
#define mod 10000
using namespace std;
struct m
{
    int a[3][3];
} init,res;
int n;
m Mult(m x,m y)
{
    m tmp;
    for(int i=0; i<2; i++)
    {
        for(int j=0; j<2; j++)
        {
            tmp.a[i][j]=0;
            for(int k=0; k<2; k++)
            {
                tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
            }
        }
    }
    return tmp;
}
m Pow(m x,int n)
{
    m tmp;
    for(int i=0; i<2; i++)
    {
        for(int j=0; j<2; j++)
        {
            tmp.a[i][j]=(i==j);
        }
    }
    while(n)
    {
        if(n&1) tmp=Mult(tmp,x);
        n>>=1;
        x=Mult(x,x);
    }
    return tmp;
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        if(n==-1) break;
        init.a[0][0]=1;
        init.a[0][1]=1;
        init.a[1][0]=1;
        init.a[1][1]=0;
        res=Pow(init,n);
        cout<<res.a[1][0]<<endl;
    }
    return 0;
}
时间: 2024-12-19 18:47:27

POJ3070:Fibonacci(矩阵快速幂模板题)的相关文章

hdu 2604 矩阵快速幂模板题

/* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f(n-4)种 对于fmm那么对于第n-3个人没有限制有f(n-3)种 顾f(n)=f(n-1)+f(n-3)+f(n-4); 求出前四个结果分别是 a[1]=2;a[2]=4;a[3]=6;a[4]=9; A=|a[4],a[3],a[2],a[1]| 可以构造矩阵 |1 1 0 0 | B= |0

hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容. Output对应每组数据,输出Tr(A^k)%9973. Sample Input22 21 00 13 999999991 2 34

CodeForces 450B (矩阵快速幂模板题+负数取模)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N项.注意负数取模的方式:-1%(10^9+7)=10^9+6. 解题思路: 首先解出快速幂矩阵.以f3为例. [f2]  * [1 -1] = [f2-f1]=[f3]  (幂1次) [f1]  * [1  0]     [f2]      [f2] 于是fn=[f2] *[1 -1]^(n-2)

HDU1757又是一道矩阵快速幂模板题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 按照题目的要求构造矩阵 //Author: xiaowuga //矩阵: //a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 9 // 1 0 0 0 0 0 0 0 0 0 8 // 0 1 0 0 0 0 0 0 0 0 7 // 0 0 1 0 0 0 0 0 0 0 6 // 0 0 0 1 0 0 0 0 0 0 5 // 0 0 0 0 1 0 0 0 0 0 4 //

HDU1575:Tr A(矩阵快速幂模板题)

http://acm.hdu.edu.cn/showproblem.php?pid=1575 #include <iostream> #include <string.h> #include <stdlib.h> #include <cstdio> #include <algorithm> #define mod 9973 using namespace std; struct matrix { int a[11][11]; } init,res

矩阵快速幂模板题

题目描述 God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous. Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there ar

poj 3070 Fibonacci (矩阵快速幂求斐波那契数列的第n项)

题意就是用矩阵乘法来求斐波那契数列的第n项的后四位数.如果后四位全为0,则输出0,否则 输出后四位去掉前导0,也...就...是...说...输出Fn%10000. 题目说的如此清楚..我居然还在%和/来找后四位还判断是不是全为0还输出时判断是否为0然后 去掉前导0.o(╯□╰)o 还有矩阵快速幂的幂是0时要特判. P.S:今天下午就想好今天学一下矩阵乘法方面的知识,这题是我的第一道正式接触矩阵乘法的题,欧耶! #include<cstdio> #include<iostream>

51nod1113(矩阵快速幂模板)

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113 题意:中文题诶- 思路:矩阵快速幂模板 代码: 1 #include <iostream> 2 #define ll long long 3 using namespace std; 4 5 const int mod = 1e9+7; 6 const int MAXN = 1e2+10; 7 int n, m; 8 9 typedef struct

矩阵快速幂模板篇

转载请注明出处:http://blog.csdn.net/u012860063 或许你们看不太懂,纯属自用: 第一种: Description Let's define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n-1) + f(n-2), n > 1 When a = 0 and b = 1, this sequence gives the Fibonacci seq