BZOJ 2433 智能车比赛(计算几何+最短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2433

题意:若干个矩形排成一排(同一个x之上最多有一个矩形),矩形i和i+1相邻。给定两点S和T,两点均在矩形内。求S到T的最短路径。只能在矩形内部走。

思路:首先,S到T若有转弯,必定是在矩形 的顶点处转弯。因此,只要建立任意两可达顶点(包含S和T)之间距离求最短路即可。若暴力枚举任意两点再判是否可达复杂度O(n^3)。优化。枚举起点 a,从左向右扫遍矩形,利用叉积维护关于该点a的上下界,在该范围之内的点均可达。

struct point
{
    int x,y;

    point(){}
    point(int _x,int _y)
    {
        x=_x;
        y=_y;
    }

    void get()
    {
        RD(x,y);
    }

    point operator-(point a)
    {
        return point(x-a.x,y-a.y);
    }

    i64 operator*(point a)
    {
        return (i64)x*a.y-(i64)y*a.x;
    }

    double len()
    {
        return sqrt(1.0*x*x+1.0*y*y);
    }
};

struct node
{
    point a,b,c,d;

    void get()
    {
        int x1,y1,x2,y2;
        RD(x1,y1); RD(x2,y2);
        a=point(x1,y1);
        b=point(x1,y2);
        c=point(x2,y1);
        d=point(x2,y2);
    }

    int contain(point p)
    {
        return a.x<=p.x&&p.x<=c.x&&a.y<=p.y&&p.y<=b.y;
    }
};

double f[N],v,ans;
node a[N];
point S,T;
int n;

double dis(point a,point b)
{
    a=a-b;
    return a.len();
}

i64 cross(point a,point b,point c)
{
    return (b-a)*(c-a);
}

int isCross(point a,point b,point c,point d)
{
    if(b.x<a.x) return 0;
    return cross(a,c,b)<=0&&cross(a,d,b)>=0;
}

void update(point S,int now,double p)
{
    if(p>=dinf) return;
    point up=point(S.x,S.y+1);
    point down=point(S.x,S.y-1);
    point l,r;
    int i;
    for(i=now;i<n;i++)
    {
        if(isCross(S,a[i].a,up,down)) f[i*4]=min(f[i*4],p+dis(S,a[i].a));
        if(isCross(S,a[i].b,up,down)) f[i*4+1]=min(f[i*4+1],p+dis(S,a[i].b));
        if(isCross(S,a[i].c,up,down)) f[i*4+2]=min(f[i*4+2],p+dis(S,a[i].c));
        if(isCross(S,a[i].d,up,down)) f[i*4+3]=min(f[i*4+3],p+dis(S,a[i].d));
        if(a[i].contain(T)&&isCross(S,T,up,down)) ans=min(ans,p+dis(S,T));
        if(i+1<n)
        {
            l=point(a[i].c.x,max(a[i].c.y,a[i+1].a.y));
            r=point(a[i].d.x,min(a[i].d.y,a[i+1].b.y));
            if(a[i].c.x==S.x)
            {
                if(l.y>S.y||S.y>r.y)
                {
                    f[(i+1)*4]=min(f[(i+1)*4],p+dis(S,a[i+1].a));
                    f[(i+1)*4+1]=min(f[(i+1)*4+1],p+dis(S,a[i+1].b));
                    return;
                }
            }
            else
            {
                if(cross(S,down,l)>0) down=l;
                if(cross(S,up,r)<0) up=r;
                if(cross(S,up,down)>0) return;
            }
        }
    }
}

int main()
{
    RD(n);
    int i;
    FOR0(i,n) a[i].get();
    S.get(); T.get();
    RD(v);
    if(S.x>T.x) swap(S,T);
    FOR0(i,4*n) f[i]=dinf;
    ans=dinf;
    FOR0(i,n)
    {
        if(a[i].contain(S)) update(S,i,0);
        update(a[i].a,i,f[i*4]);
        update(a[i].b,i,f[i*4+1]);
        update(a[i].c,i,f[i*4+2]);
        update(a[i].d,i,f[i*4+3]);
    }
    PR(ans/v);
}

BZOJ 2433 智能车比赛(计算几何+最短路),布布扣,bubuko.com

时间: 2024-10-13 01:23:49

BZOJ 2433 智能车比赛(计算几何+最短路)的相关文章

bzoj 2433 [Noi2011]智能车比赛 [计算几何+spfa]

Description 新一届智能车大赛在JL大学开始啦!比赛赛道可以看作是由n个矩形区域拼接而成(如下图所示),每个矩形的边都平行于坐标轴,第i个矩形区域的左下角和右上角坐标分别为(xi,1,yi,1)和(xi,2,yi,2). 题目保证:xi,1<xi,2=xi+1,1,且yi,1< yi,2,相邻两个矩形一定有重叠在一起的边(如图中虚线所示),智能车可以通过这部分穿梭于矩形区域之间. 选手们需要在最快的时间内让自己设计的智能车从一个给定的起点S点到达一个给定的终点T点,且智能车不能跑出赛

独立、原创、总结、分享、行动——由海滨学生参观实验室及“飞思卡尔”杯智能车比赛想到的

题记:以下内容,都是老师在和学生交流过程中发现的现象,这里主要指出了存在的问题和可能的解决方法.其实同学们也有很多的优点,这里没有一一叙述.本着"有则改之,无则加勉"的态度分享自己的感受. 今天海滨学院环境专业大二学生,在曹瑞雪博士带领下来主校区参观,其中有一个点为我们海洋遥感与信息技术实验室. 接到曹老师电话(还有20分钟到达),立即把楼顶天线的门打开,同时走了一下参观的路线.在7楼恰好看到有同学在试车(参加智能车比赛的学生,7楼是科技园的一个智能车训练场地),简单的交流了几句,了解

飞思卡尔智能车电磁组分区算法介绍

写在之前的话: 1.目前我是一名在校学生,这也是我第一次写博客,不周之处,请多谅解: 2.此算法并非原创,借鉴自山东德州学院第八届白杨队(PS:个人看法,对于一些人把别人的开源东西改头换面一下就说是自己的原创行为十分鄙视): 3.对于此算法的理解和说明并非纸上谈兵,算法已经被我运用到了小车比赛中并取得好的成绩(具体就不多说了,比赛时车莫名其妙坏了,比赛前调试的速度绝对能进国赛,比较遗憾),总之这算法是我尝试过的最好的算法: 4.这一次所介绍的只是路径算法和一些知识普及,后面有时间会介绍其余部分算

BZOJ 1003 物流运输trans(最短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1003 思路:m个点e条边n天.给出每条边的权值以及有些点有些天不能走.对于某连续的两天i和i+1,若两天从起点到终点选择的路径不同需要额外代价K.求最小的总代价:ans=sum(每天的代价)+K*改变的次数.每天的代价定义为这一天s到t选择的路径的长度. 思路:令cost[i][j]表示从第i天 到第j天选择一条路径的最短路,f[i]表示前i天的总代价,则f[i]=min(f[j]+c

Poj 1556 The Doors 计算几何+最短路

其实本题非常的无脑,无脑拍完1A,写到blog里只因为TM无脑拍也拍了很久啊= = #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdl

BZOJ 1975 魔法猪学院(K短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1975 题意:给出一个带权有向图.求一个最大的K使得前K短路的长度之和不大于给定的值Sum. 思路:首先,求出每个点到n的最短路.接着,使用优先队列,节点为(D,u).首先将(dis[1],1)进队.由于D在任意时候为一条1到n的路径的长度,那么对于边<u,v,w>,D-dis[u]+w+dis[v]为一条新的路径的长度. vector<pair<int,double>

BZOJ 2753 滑雪与时间胶囊(最短路-克鲁斯卡尔)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2753 题意:一个n个点m条边的带权无向图,每个点有一个高度值h.某个从1号点开始遍历,每次走的边u到v,必须满足h[u]>=h[v].已知从当前点回到曾经遍历过的任意一个点是不需要走路的.求最多可以遍历多少个点?遍历这些点走的最小路程是多少? 思路:只记录h[u]>=h[v]的 边,因为其他边是无用的,这样其实是个有向图.首先从1BFS一次可以得到多少个点可以到达.然后将边排序,对于

手势控制四轮智能车移动

视频请看这里 1. 输入设备 这里使用的是Andriod手机,根据加速计的来推测手势:停止,前进,后退,左右转向 2. 手机与智能车通讯 智能车上的树莓派运行一个tornado web service, 当检测到一个动作后通过http访问url即可.该web service可以驱动轮子转动

【sky第二期--PID算法】--【智能车论坛】

[sky第二期--PID算法] 想学PID的可以来[智能车论坛]这里有我发布的资料http://bbs.tekbots.eefocus.com/forum.php?mod=viewthread&tid=213301&fromuid=108990 欢迎交流