Description
Problem H: Partitioning by Palindromes
We say a sequence of characters is a palindrome if it is the same written forwards and backwards. For example, ‘racecar‘ is a palindrome, but ‘fastcar‘ is not.
A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence. For example, (‘race‘, ‘car‘)
is a partition of ‘racecar‘ into two groups.
Given a sequence of characters, we can always create a partition of these characters such that each group in the partition is a palindrome! Given this observation it is natural to ask: what is the minimum number of groups needed
for a given string such that every group is a palindrome?
For example:
- ‘racecar‘ is already a palindrome, therefore it can be partitioned into one group.
- ‘fastcar‘ does not contain any non-trivial palindromes, so it must be partitioned as (‘f‘, ‘a‘, ‘s‘, ‘t‘, ‘c‘, ‘a‘, ‘r‘).
- ‘aaadbccb‘ can be partitioned as (‘aaa‘, ‘d‘, ‘bccb‘).
Input begins with the number n of test cases. Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within.
For each test case, output a line containing the minimum number of groups required to partition the input into groups of palindromes.
Sample Input
3 racecar fastcar aaadbccb
Sample Output
1 7 3
Kevin Waugh
题意:求出字符串的最小回文串个数。
思路:dp求回文串,最后求最小个数。
AC代码:
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.StreamTokenizer; import java.util.*; public class Main{ public static void main(String[] args) throws IOException { //Scanner scan=new Scanner(System.in); StreamTokenizer st = new StreamTokenizer(new BufferedReader( new InputStreamReader(System.in))); st.nextToken(); int n=(int)st.nval; //scan.nextLine(); for(int i=0;i<n;i++){ st.nextToken(); String s=(String)st.sval; int len=s.length(); char a[]=new char[len]; a=s.toCharArray(); int dp[][]=new int[1010][1010]; for(int j=0;j<len;j++){ dp[j][j]=1; dp[j+1][j]=1; } for(int j=len-1;j>=0;j--){ for(int k=j+1;k<len;k++){ dp[j][k]=Math.min(dp[j+1][k]+1, dp[j][k-1]+1); if(a[j]==a[k]&&dp[j+1][k-1]==1){ dp[j][k]=Math.min(dp[j][k], 1); } } } for(int j=0;j<len;j++){ for(int k=0;k<j;k++){ dp[0][j]=Math.min(dp[0][j], dp[0][k]+dp[k+1][j]); } } System.out.println(dp[0][len-1]); } } }
UVa 11583 Partitioning by Palindromes,布布扣,bubuko.com