直方图匹配
OpenCV implements the function compareHist to perform a comparison.
- 1,Correlation ( CV_COMP_CORREL )
线性相关,完全匹配的数值为1,完全不匹配是-1
where
and is the total number of histogram bins.
- 2,Chi-Square ( CV_COMP_CHISQR )
卡方 ~ 完全匹配是0,完全不匹配为无穷
- 3,Intersection ( method=CV_COMP_INTERSECT )
相交 ~~ 完全匹配是1,完全不匹配是0
- 4,Bhattacharyya distance ( CV_COMP_BHATTACHARYYA )
巴氏距离 ~~ 完全匹配是0,完全不匹配是1
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
截取原图像的一半 ———— Range !!
Code
#include "stdafx.h" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; /** * @function main */ int main( int argc, char** argv ) { Mat src_base, hsv_base; Mat src_test1, hsv_test1; Mat src_test2, hsv_test2; Mat hsv_half_down; /// Load three images with different environment settings /* if( argc < 4 ) { printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n"); return -1; }*/ src_base = imread( "img1.jpg", 1 ); src_test1 = imread( "img3.jpg", 1 ); src_test2 = imread( "img4.jpg", 1 ); /// Convert to HSV cvtColor( src_base, hsv_base, COLOR_BGR2HSV ); cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV ); cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV ); hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) ); /// Using 50 bins for hue and 60 for saturation int h_bins = 50; int s_bins = 60; int histSize[] = { h_bins, s_bins }; // hue varies from 0 to 179, saturation from 0 to 255 float h_ranges[] = { 0, 180 }; float s_ranges[] = { 0, 256 }; const float* ranges[] = { h_ranges, s_ranges }; // Use the o-th and 1-st channels int channels[] = { 0, 1 }; /// Histograms MatND hist_base; MatND hist_half_down; MatND hist_test1; MatND hist_test2; /// Calculate the histograms for the HSV images calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false ); // 2 维直方图 normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() ); calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false ); normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() ); calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false ); normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() ); calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false ); normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() ); /// Apply the histogram comparison methods for( int i = 0; i < 4; i++ ) { int compare_method = i; double base_base = compareHist( hist_base, hist_base, compare_method ); double base_half = compareHist( hist_base, hist_half_down, compare_method ); double base_test1 = compareHist( hist_base, hist_test1, compare_method ); double base_test2 = compareHist( hist_base, hist_test2, compare_method ); printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 ); } printf( "Done \n" ); return 0; }
注意:
二维直方图的定义方式
由于 uniform flag 选为 true,所以指定range的上下限之后,它会根据指定的bins均分
时间: 2024-11-03 14:30:20