kafka源码解析之九ReplicaManager

首先解释下2个名词:

AR(assignreplicas):分配副本  ISR(in-sync replicas):在同步中的副本,即下图:

Partition {
  topic                   : string           //topic名称
  partition_id            : int          //partition id
  leader                  : Replica           // 这个分区的leader副本,是isr中的其中一个
  ISR                     : Set[Replica]      // 正在同步中的副本集合
  AR                      : Set[Replica]      // 这个分区的所有副本分配集合,一个broker上有至多一个分区副本
  LeaderAndISRVersionInZK : long    // version id of the LeaderAndISR path; used for conditionally update the LeaderAndISR path in ZK
}
Replica {                                // 一个分区副本信息
  broker_id               : int
  partition               : Partition    //分区信息
  log                     : Log          //本地日志与副本关联信息
  hw                      : long         //最后被commit的message的offset信息
  leo                     : long         // 日志结尾offset
  isLeader                : Boolean      //是否为该副本的leader
}

接下来来看ReplicaManager的主要作用,它的角色定位是负责接收controller的command以完成replica的管理工作,command主要有两种, LeaderAndISRCommand和StopReplicaCommand。因此主要完成三件事:

1)接受LeaderAndISRCommand命令 2)接受StopReplicaCommand命令 3)开启定时线程maybeShrinkIsr

,以便发现那些已经没有进行同步的复本

9.1 LeaderAndISRCommand处理流程

当KafkaServer接受到LeaderAndIsrRequest指令时,会调用ReplicaManager的becomeLeaderOrFollower函数
def becomeLeaderOrFollower(leaderAndISRRequest: LeaderAndIsrRequest,
                           offsetManager: OffsetManager): (collection.Map[(String, Int), Short], Short) = {
  leaderAndISRRequest.partitionStateInfos.foreach { case ((topic, partition), stateInfo) =>
    stateChangeLogger.trace("Broker %d received LeaderAndIsr request %s correlation id %d from controller %d epoch %d for partition [%s,%d]"
                              .format(localBrokerId, stateInfo, leaderAndISRRequest.correlationId,
                                      leaderAndISRRequest.controllerId, leaderAndISRRequest.controllerEpoch, topic, partition))
  }
  replicaStateChangeLock synchronized {
    val responseMap = new collection.mutable.HashMap[(String, Int), Short]
    if(leaderAndISRRequest.controllerEpoch < controllerEpoch) { // 检查requset epoch
      leaderAndISRRequest.partitionStateInfos.foreach { case ((topic, partition), stateInfo) =>
      stateChangeLogger.warn(("Broker %d ignoring LeaderAndIsr request from controller %d with correlation id %d since " +
        "its controller epoch %d is old. Latest known controller epoch is %d").format(localBrokerId, leaderAndISRRequest.controllerId,
        leaderAndISRRequest.correlationId, leaderAndISRRequest.controllerEpoch, controllerEpoch))
      }
      (responseMap, ErrorMapping.StaleControllerEpochCode)
    } else {
      val controllerId = leaderAndISRRequest.controllerId
      val correlationId = leaderAndISRRequest.correlationId
      controllerEpoch = leaderAndISRRequest.controllerEpoch

      // First check partition's leader epoch
      // 前面只是检查了request的epoch,但是还要检查其中的每个partitionStateInfo中的leader epoch
      val partitionState = new HashMap[Partition, PartitionStateInfo]()
      leaderAndISRRequest.partitionStateInfos.foreach{ case ((topic, partitionId), partitionStateInfo) =>
        val partition = getOrCreatePartition(topic, partitionId)
        val partitionLeaderEpoch = partition.getLeaderEpoch()
        // If the leader epoch is valid record the epoch of the controller that made the leadership decision.
        // This is useful while updating the isr to maintain the decision maker controller's epoch in the zookeeper path
        // local的partitionLeaderEpoch要小于request中的leaderEpoch,否则就是过时的request
        if (partitionLeaderEpoch < partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leaderEpoch) {
          // 判断该partition是否被assigned给当前的broker
          if(partitionStateInfo.allReplicas.contains(config.brokerId))
          // 只将被分配到当前broker的partition放入partitionState,其中partition是当前的状况,partitionStateInfo是request中最新的状况
            partitionState.put(partition, partitionStateInfo)
          else {
            stateChangeLogger.warn(("Broker %d ignoring LeaderAndIsr request from controller %d with correlation id %d " +
              "epoch %d for partition [%s,%d] as itself is not in assigned replica list %s")
              .format(localBrokerId, controllerId, correlationId, leaderAndISRRequest.controllerEpoch,
              topic, partition.partitionId, partitionStateInfo.allReplicas.mkString(",")))
          }
        } else {
          // Otherwise record the error code in response
          stateChangeLogger.warn(("Broker %d ignoring LeaderAndIsr request from controller %d with correlation id %d " +
            "epoch %d for partition [%s,%d] since its associated leader epoch %d is old. Current leader epoch is %d")
            .format(localBrokerId, controllerId, correlationId, leaderAndISRRequest.controllerEpoch,
            topic, partition.partitionId, partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leaderEpoch, partitionLeaderEpoch))
          responseMap.put((topic, partitionId), ErrorMapping.StaleLeaderEpochCode)
        }
      }
      //核心逻辑,判断是否为leader或follower,分别调用makeLeaders和makeFollowers
      //case (partition, partitionStateInfo)中,partition是replicaManager当前的情况,而partitionStateInfo中间放的是request的新的分配情况,
      //筛选出partitionsTobeLeader
      val partitionsTobeLeader = partitionState
        .filter{ case (partition, partitionStateInfo) => partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leader == config.brokerId}
      //筛选出partitionsToBeFollower
val partitionsToBeFollower = (partitionState -- partitionsTobeLeader.keys)

      // 如果是leader,则调用leader的流程
      if (!partitionsTobeLeader.isEmpty)
        makeLeaders(controllerId, controllerEpoch, partitionsTobeLeader, leaderAndISRRequest.correlationId, responseMap, offsetManager)
       // 如果是follower,则调用follower的流程
if (!partitionsToBeFollower.isEmpty)
        makeFollowers(controllerId, controllerEpoch, partitionsToBeFollower, leaderAndISRRequest.leaders, leaderAndISRRequest.correlationId, responseMap, offsetManager)

      // we initialize highwatermark thread after the first leaderisrrequest. This ensures that all the partitions
      // have been completely populated before starting the checkpointing there by avoiding weird race conditions
      if (!hwThreadInitialized) {
        // 启动HighWaterMarksCheckPointThread,hw很重要,需要定期存到磁盘,这样failover的时候可以往后load
        startHighWaterMarksCheckPointThread()
        hwThreadInitialized = true
      }
      //关闭idle的fether,如果成为leader,就不需要fetch
      replicaFetcherManager.shutdownIdleFetcherThreads()
      (responseMap, ErrorMapping.NoError)
    }
  }
}

主要是筛选出分配给该broker的partition的副本,并且根据lead是否为该brokerId区分为leader和follower,然后分别进入不同的流程

进入makeLeaders:

private def makeLeaders(controllerId: Int, epoch: Int,
                        partitionState: Map[Partition, PartitionStateInfo],
                        correlationId: Int, responseMap: mutable.Map[(String, Int), Short],
                        offsetManager: OffsetManager) = {
  partitionState.foreach(state =>
    stateChangeLogger.trace(("Broker %d handling LeaderAndIsr request correlationId %d from controller %d epoch %d " +
      "starting the become-leader transition for partition %s")
      .format(localBrokerId, correlationId, controllerId, epoch, TopicAndPartition(state._1.topic, state._1.partitionId))))
  for (partition <- partitionState.keys)
    responseMap.put((partition.topic, partition.partitionId), ErrorMapping.NoError)
  try {
    // First stop fetchers for all the partitions
    //暂停该fetch线程
    replicaFetcherManager.removeFetcherForPartitions(partitionState.keySet.map(new TopicAndPartition(_)))
    partitionState.foreach { state =>
      stateChangeLogger.trace(("Broker %d stopped fetchers as part of become-leader request from controller " +
        "%d epoch %d with correlation id %d for partition %s")
        .format(localBrokerId, controllerId, epoch, correlationId, TopicAndPartition(state._1.topic, state._1.partitionId)))
    }
    // Update the partition information to be the leader
    //更新Partition中的属性
    partitionState.foreach{ case (partition, partitionStateInfo) =>
      partition.makeLeader(controllerId, partitionStateInfo, correlationId, offsetManager)}
  } catch {
    case e: Throwable =>
      partitionState.foreach { state =>
        val errorMsg = ("Error on broker %d while processing LeaderAndIsr request correlationId %d received from controller %d" +
          " epoch %d for partition %s").format(localBrokerId, correlationId, controllerId, epoch,
                                              TopicAndPartition(state._1.topic, state._1.partitionId))
        stateChangeLogger.error(errorMsg, e)
      }
      // Re-throw the exception for it to be caught in KafkaApis
      throw e
  }
  partitionState.foreach { state =>
    stateChangeLogger.trace(("Broker %d completed LeaderAndIsr request correlationId %d from controller %d epoch %d " +
      "for the become-leader transition for partition %s")
      .format(localBrokerId, correlationId, controllerId, epoch, TopicAndPartition(state._1.topic, state._1.partitionId)))
  }
}
进入makeFollowers
private def makeFollowers(controllerId: Int, epoch: Int, partitionState: Map[Partition, PartitionStateInfo],
                          leaders: Set[Broker], correlationId: Int, responseMap: mutable.Map[(String, Int), Short],
                          offsetManager: OffsetManager) {
  partitionState.foreach { state =>
    stateChangeLogger.trace(("Broker %d handling LeaderAndIsr request correlationId %d from controller %d epoch %d " +
      "starting the become-follower transition for partition %s")
      .format(localBrokerId, correlationId, controllerId, epoch, TopicAndPartition(state._1.topic, state._1.partitionId)))
  }
  for (partition <- partitionState.keys)
    responseMap.put((partition.topic, partition.partitionId), ErrorMapping.NoError)
  try {
    var partitionsToMakeFollower: Set[Partition] = Set()
    // TODO: Delete leaders from LeaderAndIsrRequest in 0.8.1
    partitionState.foreach{ case (partition, partitionStateInfo) =>
      val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch
      val newLeaderBrokerId = leaderIsrAndControllerEpoch.leaderAndIsr.leader
      leaders.find(_.id == newLeaderBrokerId) match {//只改变那些leader是available broker的partition
        // Only change partition state when the leader is available
        case Some(leaderBroker) =>
     // 仅仅当partition的leader发生变化时才返回true,因为如果不变,不需要做任何操作
          if (partition.makeFollower(controllerId, partitionStateInfo, correlationId, offsetManager))
            partitionsToMakeFollower += partition
          else
            stateChangeLogger.info(("Broker %d skipped the become-follower state change after marking its partition as follower with correlation id %d from " +
              "controller %d epoch %d for partition [%s,%d] since the new leader %d is the same as the old leader")
              .format(localBrokerId, correlationId, controllerId, leaderIsrAndControllerEpoch.controllerEpoch,
              partition.topic, partition.partitionId, newLeaderBrokerId))
        case None =>
          // The leader broker should always be present in the leaderAndIsrRequest.
          // If not, we should record the error message and abort the transition process for this partition
          stateChangeLogger.error(("Broker %d received LeaderAndIsrRequest with correlation id %d from controller" +
            " %d epoch %d for partition [%s,%d] but cannot become follower since the new leader %d is unavailable.")
            .format(localBrokerId, correlationId, controllerId, leaderIsrAndControllerEpoch.controllerEpoch,
            partition.topic, partition.partitionId, newLeaderBrokerId))
          // Create the local replica even if the leader is unavailable. This is required to ensure that we include
          // the partition's high watermark in the checkpoint file (see KAFKA-1647)
          partition.getOrCreateReplica()
      }
    }
    //由于leader已发生变化,需要把旧的fetcher删除 ,因为它指向了旧的leader,从旧的leader fetch数据
    replicaFetcherManager.removeFetcherForPartitions(partitionsToMakeFollower.map(new TopicAndPartition(_)))
    partitionsToMakeFollower.foreach { partition =>
      stateChangeLogger.trace(("Broker %d stopped fetchers as part of become-follower request from controller " +
        "%d epoch %d with correlation id %d for partition %s")
        .format(localBrokerId, controllerId, epoch, correlationId, TopicAndPartition(partition.topic, partition.partitionId)))
    }
    //由于leader已发生变化,所以之前和旧leader同步的数据可能和新的leader是不一致的,但hw以下的数据,大家都是一致的,所以就把hw以上的数据truncate掉,防止不一致
    logManager.truncateTo(partitionsToMakeFollower.map(partition => (new TopicAndPartition(partition), partition.getOrCreateReplica().highWatermark.messageOffset)).toMap)
    partitionsToMakeFollower.foreach { partition =>
      stateChangeLogger.trace(("Broker %d truncated logs and checkpointed recovery boundaries for partition [%s,%d] as part of " +
        "become-follower request with correlation id %d from controller %d epoch %d").format(localBrokerId,
        partition.topic, partition.partitionId, correlationId, controllerId, epoch))
    }
    if (isShuttingDown.get()) {  //真正shuttingDown,就不要再加fetcher
      partitionsToMakeFollower.foreach { partition =>
        stateChangeLogger.trace(("Broker %d skipped the adding-fetcher step of the become-follower state change with correlation id %d from " +
          "controller %d epoch %d for partition [%s,%d] since it is shutting down").format(localBrokerId, correlationId,
          controllerId, epoch, partition.topic, partition.partitionId))
      }
    }
    else {
      // we do not need to check if the leader exists again since this has been done at the beginning of this process
      val partitionsToMakeFollowerWithLeaderAndOffset = partitionsToMakeFollower.map(partition =>
        new TopicAndPartition(partition) -> BrokerAndInitialOffset(
          leaders.find(_.id == partition.leaderReplicaIdOpt.get).get,
          partition.getReplica().get.logEndOffset.messageOffset)).toMap
        //增加新的fetcher,指向新的leader
      replicaFetcherManager.addFetcherForPartitions(partitionsToMakeFollowerWithLeaderAndOffset)
      partitionsToMakeFollower.foreach { partition =>
        stateChangeLogger.trace(("Broker %d started fetcher to new leader as part of become-follower request from controller " +
          "%d epoch %d with correlation id %d for partition [%s,%d]")
          .format(localBrokerId, controllerId, epoch, correlationId, partition.topic, partition.partitionId))
      }
    }
  } catch {
    case e: Throwable =>
      val errorMsg = ("Error on broker %d while processing LeaderAndIsr request with correlationId %d received from controller %d " +
        "epoch %d").format(localBrokerId, correlationId, controllerId, epoch)
      stateChangeLogger.error(errorMsg, e)
      // Re-throw the exception for it to be caught in KafkaApis
      throw e
  }

  partitionState.foreach { state =>
    stateChangeLogger.trace(("Broker %d completed LeaderAndIsr request correlationId %d from controller %d epoch %d " +
      "for the become-follower transition for partition %s")
      .format(localBrokerId, correlationId, controllerId, epoch, TopicAndPartition(state._1.topic, state._1.partitionId)))
  }
}

9.2 StopReplicaCommand处理流程

当broker stop或用户删除某replica时,KafkaServer会接受到StopReplicaRequest指令,此时会调用ReplicaManager的stopReplicas函数:
def stopReplicas(stopReplicaRequest: StopReplicaRequest): (mutable.Map[TopicAndPartition, Short], Short) = {
  replicaStateChangeLock synchronized {
    val responseMap = new collection.mutable.HashMap[TopicAndPartition, Short]
    if(stopReplicaRequest.controllerEpoch < controllerEpoch) {
      stateChangeLogger.warn("Broker %d received stop replica request from an old controller epoch %d."
        .format(localBrokerId, stopReplicaRequest.controllerEpoch) +
        " Latest known controller epoch is %d " + controllerEpoch)
      (responseMap, ErrorMapping.StaleControllerEpochCode)
    } else {
      controllerEpoch = stopReplicaRequest.controllerEpoch
      // First stop fetchers for all partitions, then stop the corresponding replicas
      // 先通过FetcherManager停止相关partition的Fetcher线程
      replicaFetcherManager.removeFetcherForPartitions(stopReplicaRequest.partitions.map(r => TopicAndPartition(r.topic, r.partition)))
      for(topicAndPartition <- stopReplicaRequest.partitions){
       // 然后针对不同的 topicAndPartition stop 副本
val errorCode = stopReplica(topicAndPartition.topic, topicAndPartition.partition, stopReplicaRequest.deletePartitions)
        responseMap.put(topicAndPartition, errorCode)
      }
      (responseMap, ErrorMapping.NoError)
    }
  }
}
stopReplica在很多情况下是不需要真正删除replica的,比如宕机
def stopReplica(topic: String, partitionId: Int, deletePartition: Boolean): Short  = {
  stateChangeLogger.trace("Broker %d handling stop replica (delete=%s) for partition [%s,%d]".format(localBrokerId,
    deletePartition.toString, topic, partitionId))
  val errorCode = ErrorMapping.NoError
  getPartition(topic, partitionId) match {
    case Some(partition) =>
      if(deletePartition) {  // 仅仅在deletePartition=true时,才会真正删除该partition
        val removedPartition = allPartitions.remove((topic, partitionId))
        if (removedPartition != null)
          removedPartition.delete() // this will delete the local log
      }
    case None =>
      // Delete log and corresponding folders in case replica manager doesn't hold them anymore.
      // This could happen when topic is being deleted while broker is down and recovers.
      if(deletePartition) {
        val topicAndPartition = TopicAndPartition(topic, partitionId)

        if(logManager.getLog(topicAndPartition).isDefined) {
            logManager.deleteLog(topicAndPartition)
        }
      }
      stateChangeLogger.trace("Broker %d ignoring stop replica (delete=%s) for partition [%s,%d] as replica doesn't exist on broker"
        .format(localBrokerId, deletePartition, topic, partitionId))
  }
  stateChangeLogger.trace("Broker %d finished handling stop replica (delete=%s) for partition [%s,%d]"
    .format(localBrokerId, deletePartition, topic, partitionId))
  errorCode
}

9.3 maybeShrinkIsr处理流程

在启动的时候会开启maybeShrinkIsr任务供调度器调度,其主要作用是周期性检查isr中的SyncTime和SyncMessages来判断某些副本是否已经不在同步状态了。
def startup() {
  // start ISR expiration thread
  scheduler.schedule("isr-expiration", maybeShrinkIsr, period = config.replicaLagTimeMaxMs, unit = TimeUnit.MILLISECONDS)
}
private def maybeShrinkIsr(): Unit = {
  trace("Evaluating ISR list of partitions to see which replicas can be removed from the ISR")
  allPartitions.values.foreach(partition => partition.maybeShrinkIsr(config.replicaLagTimeMaxMs, config.replicaLagMaxMessages))
}
def maybeShrinkIsr(replicaMaxLagTimeMs: Long,  replicaMaxLagMessages: Long) {
  inWriteLock(leaderIsrUpdateLock) {
    leaderReplicaIfLocal() match {
      case Some(leaderReplica) =>
         // getOutOfSyncReplicas获取不在同步状态的副本
        val outOfSyncReplicas = getOutOfSyncReplicas(leaderReplica, replicaMaxLagTimeMs, replicaMaxLagMessages)
        if(outOfSyncReplicas.size > 0) {
          val newInSyncReplicas = inSyncReplicas -- outOfSyncReplicas
          assert(newInSyncReplicas.size > 0)
          info("Shrinking ISR for partition [%s,%d] from %s to %s".format(topic, partitionId,
            inSyncReplicas.map(_.brokerId).mkString(","), newInSyncReplicas.map(_.brokerId).mkString(",")))
          // update ISR in zk and in cache
          updateIsr(newInSyncReplicas) //把isr上传到zk
          // we may need to increment high watermark since ISR could be down to 1
          maybeIncrementLeaderHW(leaderReplica)
          replicaManager.isrShrinkRate.mark()
        }
      case None => // do nothing if no longer leader
    }
  }
}

def getOutOfSyncReplicas(leaderReplica: Replica, keepInSyncTimeMs: Long, keepInSyncMessages: Long): Set[Replica] = {
  /**
   * there are two cases that need to be handled here -
   * 1. Stuck followers: If the leo of the replica hasn't been updated for keepInSyncTimeMs ms,
   *                     the follower is stuck and should be removed from the ISR
   * 2. Slow followers: If the leo of the slowest follower is behind the leo of the leader by keepInSyncMessages, the
   *                     follower is not catching up and should be removed from the ISR
   **/
  val leaderLogEndOffset = leaderReplica.logEndOffset
  val candidateReplicas = inSyncReplicas - leaderReplica
  // Case 1 above
  // fetch的时候会更新logEndOffsetUpdateTimeMs
  val stuckReplicas = candidateReplicas.filter(r => (time.milliseconds - r.logEndOffsetUpdateTimeMs) > keepInSyncTimeMs)
  if(stuckReplicas.size > 0)
    debug("Stuck replicas for partition [%s,%d] are %s".format(topic, partitionId, stuckReplicas.map(_.brokerId).mkString(",")))
  // Case 2 above
  // 判断落后的messages数目
  val slowReplicas = candidateReplicas.filter(r =>
    r.logEndOffset.messageOffset >= 0 &&
    leaderLogEndOffset.messageOffset - r.logEndOffset.messageOffset > keepInSyncMessages)
  if(slowReplicas.size > 0)
    debug("Slow replicas for partition [%s,%d] are %s".format(topic, partitionId, slowReplicas.map(_.brokerId).mkString(",")))
  stuckReplicas ++ slowReplicas
}
时间: 2024-12-06 20:17:50

kafka源码解析之九ReplicaManager的相关文章

Mybaits 源码解析 (九)----- 全网最详细,没有之一:一级缓存和二级缓存源码分析

像Mybatis.Hibernate这样的ORM框架,封装了JDBC的大部分操作,极大的简化了我们对数据库的操作. 在实际项目中,我们发现在一个事务中查询同样的语句两次的时候,第二次没有进行数据库查询,直接返回了结果,实际这种情况我们就可以称为缓存. Mybatis的缓存级别 一级缓存 MyBatis的一级查询缓存(也叫作本地缓存)是基于org.apache.ibatis.cache.impl.PerpetualCache 类的 HashMap本地缓存,其作用域是SqlSession,myBat

Query源码解析(九)

jQuery回调对象 jQuery.Callbacks一般开发者接触的很少,虽然jQuery向开发者提供了外部接口调用,但是$.Callbacks()模块的开发目的是为了给内部$.ajax() 和 $.Deferred()模块提供统一的基本功能组件.它可以用来作为类似基础定义的新组件的功能. jQuery.Callbacks是jquery在1.7版本之后加入的,是从1.6版中的_Deferred对象中抽离的,主要用来进行函数队列的add.remove.fire.lock等操作,并提供once.m

kafka源码解析之十二KafkaController(中篇)

12.3 KafkaController PartitionStateMachine 它实现了topic的分区状态切换功能,Partition存在的状态如下: 状态名 状态存在的时间 有效的前置状态 NonExistentPartition 1.partition重来没有被创建 2.partition创建之后被删除 OfflinePartition NewPartition 1.partition创建之后,被分配了replicas,但是还没有leader/isr NonExistentParti

kafka源码解析之十二KafkaController(下篇)

12.6 KafkaController内部的listener KafkaControler(leader)通过在zk的不同目录建立各种listener来达到对topic的管理和维护,其在zk的目录结构和对应的listener如下: 12.6.1 brokerChangeListener /** * This is the zookeeper listener that triggers all the state transitions for a replica */ class Broke

yocto-sumo源码解析(九): ProcessServer.main

前面讲到BitbakeServer实际上是一个ProcessServer,因此对ProcessServer进行了一个大略的分析集,这里着重再介绍一下ProcessServer.main. 1. 初始化 def main(self): self.cooker.pre_serve()                                                                  #调用cooker.pre_serve(),进入服务前的一些动作,这个后面继续分解  

kafka源码走读-controller (创建topic过程)

晚上刚刚被媳妇骂,难过之余,还是要坚持继续写一篇kafka源码走读的博客,心情难过,原谅我开头发下牢骚... 源码版本依然是0.10.2.1,我们都知道,kafka在0.8版本前没有提供Partition的Replication机制,一旦Broker宕机,其上的所有Partition就都无法提供服务,而Partition又没有备份数据,数据的可用性就大大降低了,所以0.8后提供了Replication机制来保证Broker的failover,而controller则是实现副本机制的核心. con

52.otto 源码解析

otto 源码解析 Otto的源码非常简单,一共就九个类. 项目结构 AnnotatedHandlerFinder ( 查找并缓存所有注解方法 ) Bus ( otto核心业务类,包括注册.反注册.发送事件等等 ) DeadEvent ( 内置事件,没有订阅者,不能被传递 ) EventHandler ( 封装@Subscribe方法及其所在类 ) EventProducer ( 封装@Produce方法及其所在类 ) HandlerFinder ( 调用AnnotatedHandlerFind

kafka源码分析之一server启动分析

1. 分析kafka源码的目的 深入掌握kafka的内部原理 深入掌握scala运用 2. server的启动 如下所示(本来准备用时序图的,但感觉时序图没有思维图更能反映,故采用了思维图): 2.1 启动入口Kafka.scala 从上面的思维导图,可以看到Kafka的启动入口是Kafka.scala的main()函数: def main(args: Array[String]): Unit = { try { val serverProps = getPropsFromArgs(args)

Android网络编程(十一)源码解析Retrofit

相关文章 Android网络编程(一)HTTP协议原理 Android网络编程(二)HttpClient与HttpURLConnection Android网络编程(三)Volley用法全解析 Android网络编程(四)从源码解析volley Android网络编程(五)OkHttp2.x用法全解析 Android网络编程(六)OkHttp3用法全解析 Android网络编程(七)源码解析OkHttp前篇[请求网络] Android网络编程(八)源码解析OkHttp后篇[复用连接池] Andr