Exponentiation
Time Limit: 500MS | Memory Limit: 10000K | |
Total Submissions: 143401 | Accepted: 34998 |
Description
Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.
This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25.
Input
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
Output
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don‘t print the decimal point if the result is an integer.
Sample Input
95.123 12 0.4321 20 5.1234 15 6.7592 9 98.999 10 1.0100 12
Sample Output
548815620517731830194541.899025343415715973535967221869852721 .00000005148554641076956121994511276767154838481760200726351203835429763013462401 43992025569.928573701266488041146654993318703707511666295476720493953024 29448126.764121021618164430206909037173276672 90429072743629540498.107596019456651774561044010001 1.126825030131969720661201import java.math.BigDecimal; import java.util.Scanner; /** * * @author bear * * stripTrailingZeros():如果小数点后面都是0的话,则把小数点和后面的0都去掉; * toPlainString()是什么样子的小数就显示什么样子,toString()将小数用科学计数法表示。 */ public class Poj1001 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (sc.hasNext()) { String input = sc.nextLine(); String rStr = input.substring(0, 6); String n = input.substring(7).trim(); BigDecimal r = new BigDecimal(rStr); //pow求幂 BigDecimal result = r.pow(Integer.valueOf(n)); //抹零+普通字符串 String resultStr = result.stripTrailingZeros().toPlainString(); if (resultStr.startsWith("0.")) { resultStr = resultStr.substring(1); } System.out.println(resultStr); } } }