#Week6 Neural Networks : Representation

一、Non-linear Hypotheses

线性回归和逻辑回归在特征很多时,计算量会很大。
一个简单的三层神经网络模型:
\[a_i^{(j)} = \text{"activation" of unit $i$ in layer $j$}\]\[\Theta^{(j)} = \text{matrix of weights controlling function mapping from layer $j$ to layer $j+1$}\]

其中:\[a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)\]\[a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)\]\[a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)\]\[h_\Theta(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})\]

二、vectorized implementation

将上面公式中函数\(g\)中的东西用\(z\)代替:
\[a_1^{(2)} = g(z_1^{(2)})\]\[a_2^{(2)} = g(z_2^{(2)})\]\[a_3^{(2)} = g(z_3^{(2)})\]
令\(x=a^{(1)}\):
\[z^{(j)} = \Theta^{(j-1)}a^{(j-1)}\]
得到:
\[
\begin{aligned}z^{(j)} = \begin{bmatrix}z_1^{(j)} \\ z_2^{(j)} \\ \cdots \\z_n^{(j)}\end{bmatrix}\end{aligned}
\]

这块的记号比较多,用例子梳理下:
实现一个逻辑与的神经网络:

那么:


所以有:

再来一个多层的,实现XNOR功能(两输入都为0或都为1,输出才为1):

基本的神经元:

  • 逻辑与
  • 逻辑或
  • 逻辑非

    先构造一个表示后半部分的神经元:
    这样的:

    接着将前半部分组合起来:

    三、Multiclass Classification

原文地址:https://www.cnblogs.com/EIMadrigal/p/12130871.html

时间: 2024-11-13 03:17:26

#Week6 Neural Networks : Representation的相关文章

Machine Learning - VIII. Neural Networks Representation (Week 4)

http://blog.csdn.net/pipisorry/article/details/4397356 机器学习Machine Learning - Andrew NG courses学习笔记 Neural Networks Representation神经网络表示 Non-linear Hypotheses非线性假设 Neurons and the Brain神经元和大脑 Model Representation模型表示 Examples and Intuitions示例和直觉知识 Mu

Neural Networks Representation ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模

机器学习之神经网络模型-上(Neural Networks: Representation)

在这篇文章中,我们一起来讨论一种叫作"神经网络"(Neural Network)的机器学习算法,这也是我硕士阶段的研究方向.我们将首先讨论神经网络的表层结构,在之后再具体讨论神经网络学习算法. 神经网络实际上是一个相对古老的算法,并且沉寂了一段时间,不过到了现在它又成为许多机器学习问题的首选技术. 1. Non-linear Hypotheses 之前我们已经介绍过线性回归和逻辑回归算法了,那为什么还要研究神经网络? 为了阐述研究神经网络算法的目的,我们首先来看几个机器学习问题作为例子

机器学习之神经网络模型-下(Neural Networks: Representation)

3. Model Representation I 1 神经网络是在模仿大脑中的神经元或者神经网络时发明的.因此,要解释如何表示模型假设,我们不妨先来看单个神经元在大脑中是什么样的. 我们的大脑中充满了如上图所示的这样的神经元,神经元是大脑中的细胞.其中有两点值得我们注意,一是神经元有像这样的细胞主体(Nucleus),二是神经元有一定数量的输入神经和输出神经.这些输入神经叫做树突(Dendrite),可以把它们想象成输入电线,它们接收来自其他神经元的信息.神经元的输出神经叫做轴突(Axon),

Neural networks representation 习题

answer:  It's stay the same.  (结果不变) 原因:交换parameters matrix 1的两行使得其与matrix a1运算得到matrix a2时交换了  a2中的第一个元素和第二个元素,即a2 subscript1 and a2 subscipt2. 正好与其对应相乘的parameters matrix 2中的参数1和2交换了位置,所以结果不变.

Neural Networks: Representation

原文地址:https://www.cnblogs.com/7fancier/p/9427050.html

Neural Networks Learning----- Stanford Machine Learning(by Andrew NG)Course Notes

本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的

(转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Part 2 Introduction Link to Part 1 In this post, we’ll go into a lot more of the specifics of ConvNets. Disclaimer: Now, I do reali

(转)A Beginner's Guide To Understanding Convolutional Neural Networks

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but