十、存储结构与磁盘划分(一)

目录结构 [收起]

6.1 一切从“/”开始

在Linux系统中,目录、字符设备、块设备、套接字、打印机等都被抽象成了文件,即刘遄老师所一直强调的“Linux系统中一切都是文件”。既然平时我们打交道的都是文件,那么又应该如何找到它们呢?在Windows操作系统中,想要找到一个文件,我们要依次进入该文件所在的磁盘分区(假设这里是D盘),然后在进入该分区下的具体目录,最终找到这个文件。但是在Linux系统中并不存在C/D/E/F等盘符,Linux系统中的一切文件都是从“根(/)”目录开始的,并按照文件系统层次化标准(FHS)采用树形结构来存放文件,以及定义了常见目录的用途。另外,Linux系统中的文件和目录名称是严格区分大小写的。例如,root、rOOt、Root、rooT均代表不同的目录,并且文件名称中不得包含斜杠(/)。Linux系统中的文件存储结构如图6-1所示。

图6-1  Linux系统中的文件存储结构

前文提到的FHS是根据以往无数Linux系统用户和开发者的经验而总结出来的,是用户在Linux系统中存储文件时需要遵守的规则,用于指导我们应该把文件保存到什么位置,以及告诉用户应该在何处找到所需的文件。但是,FHS对于用户来讲只能算是一种道德上的约束,有些用户就是懒得遵守,依然会把文件到处乱放,有些甚至从来没有听说过它。这里并不是号召各位读者去谴责他们,而是建议大家要灵活运用所学的知识,千万不要认准这个FHS协定只讲死道理,不然吃亏的可就是自己了。在Linux系统中,最常见的目录以及所对应的存放内容如表6-1所示。

表6-1                                  Linux系统中常见的目录名称以及相应内容

目录名称 应放置文件的内容
/boot 开机所需文件—内核、开机菜单以及所需配置文件等
/dev 以文件形式存放任何设备与接口
/etc 配置文件
/home 用户主目录
/bin 存放单用户模式下还可以操作的命令
/lib 开机时用到的函数库,以及/bin与/sbin下面的命令要调用的函数
/sbin 开机过程中需要的命令
/media 用于挂载设备文件的目录
/opt 放置第三方的软件
/root 系统管理员的家目录
/srv 一些网络服务的数据文件目录
/tmp 任何人均可使用的“共享”临时目录
/proc 虚拟文件系统,例如系统内核、进程、外部设备及网络状态等
/usr/local 用户自行安装的软件
/usr/sbin Linux系统开机时不会使用到的软件/命令/脚本
/usr/share 帮助与说明文件,也可放置共享文件
/var 主要存放经常变化的文件,如日志
/lost+found 当文件系统发生错误时,将一些丢失的文件片段存放在这里

在Linux系统中另外还有一个重要的概念—路径。路径指的是如何定位到某个文件,分为绝对路径与相对路径。绝对路径指的是从根目录(/)开始写起的文件或目录名称,而相对路径则指的是相对于当前路径的写法。我们来看下面这个例子,以帮助大家理解。假如有位外国游客来到中国潘家园旅游,当前内急但是找不到洗手间,特意向您问路,那么您有两种正确的指路方法。

绝对路径(absolute path):首先坐飞机来到中国,到了北京出首都机场坐机场快轨到三元桥,然后换乘10号线到潘家园站,出站后坐34路公交车到农光里,下车后路口左转。

相对路径(relative path):前面路口左转。

这两种方法都正确。如果您说的是绝对路径,那么任何一位外国游客都可以按照这个提示找到潘家园的洗手间,但是太繁琐了。如果您说的是相对路径,虽然表达很简练,但是这位外国游客只能从当前位置(不见得是潘家园)出发找到洗手间,因此并不能保证在前面的路口左转后可以找到洗手间,由此可见,相对路径不具备普适性。

如果各位读者现在还是不能理解相对路径和绝对路径的区别,也不要着急,以后通过实践练习肯定可以彻底搞明白。当前建议大家先记住FHS中规范的目录作用,这将在以后派上用场。

6.2 物理设备的命名规则

在Linux系统中一切都是文件,硬件设备也不例外。既然是文件,就必须有文件名称。系统内核中的udev设备管理器会自动把硬件名称规范起来,目的是让用户通过设备文件的名字可以猜出设备大致的属性以及分区信息等;这对于陌生的设备来说特别方便。另外,udev设备管理器的服务会一直以守护进程的形式运行并侦听内核发出的信号来管理/dev目录下的设备文件。Linux系统中常见的硬件设备的文件名称如表6-2所示。

表6-2                                             常见的硬件设备及其文件名称

硬件设备 文件名称
IDE设备 /dev/hd[a-d]
SCSI/SATA/U盘 /dev/sd[a-p]
软驱 /dev/fd[0-1]
打印机 /dev/lp[0-15]
光驱 /dev/cdrom
鼠标 /dev/mouse
磁带机 /dev/st0或/dev/ht0

由于现在的IDE设备已经很少见了,所以一般的硬盘设备都会是以“/dev/sd”开头的。而一台主机上可以有多块硬盘,因此系统采用a~p来代表16块不同的硬盘(默认从a开始分配),而且硬盘的分区编号也很有讲究:

主分区或扩展分区的编号从1开始,到4结束;

逻辑分区从编号5开始。

国内很多Linux培训讲师以及很多知名Linux图书在讲到设备和分区名称时,总会讲错两个知识点。第一个知识点是设备名称的理解错误。很多培训讲师和Linux技术图书中会提到,比如/dev/sda表示主板上第一个插槽上的存储设备,学员或读者在实践操作的时候会发现果然如此,因此也就对这条理论知识更加深信不疑。但真相不是这样的,/dev目录中sda设备之所以是a,并不是由插槽决定的,而是由系统内核的识别顺序来决定的,而恰巧很多主板的插槽顺序就是系统内核的识别顺序,因此才会被命名为/dev/sda。大家以后在使用iSCSI网络存储设备时就会发现,明明主板上第二个插槽是空着的,但系统却能识别到/dev/sdb这个设备就是这个道理。

第二个知识点是对分区名称的理解错误。很多Linux培训讲师会告诉学员,分区的编号代表分区的个数。比如sda3表示这是设备上的第三个分区,而学员在做实验的时候确实也会得出这样的结果,但是这个理论知识是错误的,因为分区的数字编码不一定是强制顺延下来的,也有可能是手工指定的。因此sda3只能表示是编号为3的分区,而不能判断sda设备上已经存在了3个分区。

在填了这两个“坑”之后,刘遄老师再来分析一下/dev/sda5这个设备文件名称包含哪些信息,如图6-2所示。

图6-2 设备文件名称

首先,/dev/目录中保存的应当是硬件设备文件;其次,sd表示是存储设备;然后,a表示系统中同类接口中第一个被识别到的设备,最后,5表示这个设备是一个逻辑分区。一言以蔽之,“/dev/sda5”表示的就是“这是系统中第一块被识别到的硬件设备中分区编号为5的逻辑分区的设备文件”。考虑到我们的很多读者完全没有Linux基础,不太容易理解前面所说的主分区、扩展分区和逻辑分区的概念,因此接下来简单科普一下硬盘相关的知识。

正是因为计算机有了硬盘设备,我们才可以在玩游戏的过程中或游戏通关之后随时存档,而不用每次重头开始。硬盘设备是由大量的扇区组成的,每个扇区的容量为512字节。其中第一个扇区最重要,它里面保存着主引导记录与分区表信息。就第一个扇区来讲,主引导记录需要占用446字节,分区表为64字节,结束符占用2字节;其中分区表中每记录一个分区信息就需要16字节,这样一来最多只有4个分区信息可以写到第一个扇区中,这4个分区就是4个主分区。第一个扇区中的数据信息如图6-3所示。

图6-3  第一个扇区中的数据信息

现在,问题来了—第一个扇区最多只能创建出4个分区?于是为了解决分区个数不够的问题,可以将第一个扇区的分区表中16字节(原本要写入主分区信息)的空间(称之为扩展分区)拿出来指向另外一个分区。也就是说,扩展分区其实并不是一个真正的分区,而更像是一个占用16字节分区表空间的指针—一个指向另外一个分区的指针。这样一来,用户一般会选择使用3个主分区加1个扩展分区的方法,然后在扩展分区中创建出数个逻辑分区,从而来满足多分区(大于4个)的需求。当然,就目前来讲大家只要明白为什么主分区不能超过4个就足够了。主分区、扩展分区、逻辑分区可以像图6-4那样来规划。

所谓扩展分区,严格地讲它不是一个实际意义的分区,它仅仅是一个指向下一个分区的指针,这种指针结构将形成一个单向链表。

图6-4 硬盘分区的规划

读者们来试着解读下/dev/hdc8代表着什么?答案模式

答案:这是第三块IDE设备(比较少见了)中的编号为8的逻辑分区。

6.3 文件系统与数据资料

用户在硬件存储设备中执行的文件建立、写入、读取、修改、转存与控制等操作都是依靠文件系统来完成的。文件系统的作用是合理规划硬盘,以保证用户正常的使用需求。Linux系统支持数十种的文件系统,而最常见的文件系统如下所示。

Ext3:是一款日志文件系统,能够在系统异常宕机时避免文件系统资料丢失,并能自动修复数据的不一致与错误。然而,当硬盘容量较大时,所需的修复时间也会很长,而且也不能百分之百地保证资料不会丢失。它会把整个磁盘的每个写入动作的细节都预先记录下来,以便在发生异常宕机后能回溯追踪到被中断的部分,然后尝试进行修复。

Ext4:Ext3的改进版本,作为RHEL 6系统中的默认文件管理系统,它支持的存储容量高达1EB(1EB=1,073,741,824GB),且能够有无限多的子目录。另外,Ext4文件系统能够批量分配block块,从而极大地提高了读写效率。

XFS:是一种高性能的日志文件系统,而且是RHEL 7中默认的文件管理系统,它的优势在发生意外宕机后尤其明显,即可以快速地恢复可能被破坏的文件,而且强大的日志功能只用花费极低的计算和存储性能。并且它最大可支持的存储容量为18EB,这几乎满足了所有需求。

RHEL 7系统中一个比较大的变化就是使用了XFS作为文件系统,这不同于RHEL 6使用的Ext4。从红帽公司官方发布的说明来看,这确实是一个不小的进步,但是刘遄老师在实测中发现并不完全属实。因为单纯就测试一款文件系统的“读取”性能来说,到底要读取多少个文件,每个文件的大小是多少,读取文件时的CPU、内存等系统资源的占用率如何,以及不同的硬件配置是否会有不同的影响,因此在充分考虑到这些不确定因素后,实在不敢直接照抄红帽官方的介绍。我个人认为XFS虽然在性能方面比Ext4有所提升,但绝不是压倒性的,因此XFS文件系统最卓越的亮点应该当属可支持高达18EB的存储容量吧。

就像拿到了一张未裁切的完整纸张那样,我们首先要进行裁切以方便使用,然后在裁切后的纸张上画格以便能书写工整。在拿到了一块新的硬盘存储设备后,也需要先分区,然后再格式化文件系统,最后才能挂载并正常使用。硬盘的分区操作取决于您的需求和硬盘大小;您也可以选择不进行分区,但是必须对硬盘进行格式化处理。接下来刘遄老师再向大家简单地科普一下硬盘在格式化后发生的事情。再次强调,不用刻意去记住,只要能看懂就行了。

日常在硬盘需要保存的数据实在太多了,因此Linux系统中有一个名为super block的“硬盘地图”。Linux并不是把文件内容直接写入到这个“硬盘地图”里面,而是在里面记录着整个文件系统的信息。因为如果把所有的文件内容都写入到这里面,它的体积将变得非常大,而且文件内容的查询与写入速度也会变得很慢。Linux只是把每个文件的权限与属性记录在inode中,而且每个文件占用一个独立的inode表格,该表格的大小默认为128字节,里面记录着如下信息:

该文件的访问权限(read、write、execute);

该文件的所有者与所属组(owner、group);

该文件的大小(size);

该文件的创建或内容修改时间(ctime);

该文件的最后一次访问时间(atime);

该文件的修改时间(mtime);

文件的特殊权限(SUID、SGID、SBIT);

该文件的真实数据地址(point)。

而文件的实际内容则保存在block块中(大小可以是1KB、2KB或4KB),一个inode的默认大小仅为128B(Ext3),记录一个block则消耗4B。当文件的inode被写满后,Linux系统会自动分配出一个block块,专门用于像inode那样记录其他block块的信息,这样把各个block块的内容串到一起,就能够让用户读到完整的文件内容了。对于存储文件内容的block块,有下面两种常见情况(以4KB的block大小为例进行说明)。

情况1:文件很小(1KB),但依然会占用一个block,因此会潜在地浪费3KB。

情况2:文件很大(5KB),那么会占用两个block(5KB-4KB后剩下的1KB也要占用一个block)。

计算机系统在发展过程中产生了众多的文件系统,为了使用户在读取或写入文件时不用关心底层的硬盘结构,Linux内核中的软件层为用户程序提供了一个VFS(Virtual File System,虚拟文件系统)接口,这样用户实际上在操作文件时就是统一对这个虚拟文件系统进行操作了。图6-5所示为VFS的架构示意图。从中可见,实际文件系统在VFS下隐藏了自己的特性和细节,这样用户在日常使用时会觉得“文件系统都是一样的”,也就可以随意使用各种命令在任何文件系统中进行各种操作了(比如使用cp命令来复制文件)。

图6-5  VFS的架构示意图

6.4 挂载硬件设备

我们在用惯了Windows系统后总觉得一切都是理所当然的,平时把U盘插入到电脑后也从来没有考虑过Windows系统做了哪些事情,才使得我们可以访问这个U盘的。接下来我们会逐一学习在Linux系统中挂载和卸载存储设备的方法,以便大家更好地了解Linux系统添加硬件设备的工作原理和流程。前面讲到,在拿到一块全新的硬盘存储设备后要先分区,然后格式化,最后才能挂载并正常使用。“分区”和“格式化”大家以前经常听到,但“挂载”又是什么呢?刘遄老师在这里给您一个最简单、最贴切的解释—当用户需要使用硬盘设备或分区中的数据时,需要先将其与一个已存在的目录文件进行关联,而这个关联动作就是“挂载”。下文将向读者逐步讲解如何使用硬盘设备,但是鉴于与挂载相关的理论知识比较复杂,而且很重要,因此决定再拿出一个小节单独讲解,这次希望大家不仅要看懂,而且还要记住。

mount命令用于挂载文件系统,格式为“mount 文件系统 挂载目录”。mount命令中可用的参数及作用如表6-3所示。挂载是在使用硬件设备前所执行的最后一步操作。只需使用mount命令把硬盘设备或分区与一个目录文件进行关联,然后就能在这个目录中看到硬件设备中的数据了。对于比较新的Linux系统来讲,一般不需要使用-t参数来指定文件系统的类型,Linux系统会自动进行判断。而mount 中的-a参数则厉害了,它会在执行后自动检查/etc/fstab文件中有无疏漏被挂载的设备文件,如果有,则进行自动挂载操作。

表6-3                                             mount命令中的参数以及作用

参数 作用
-a 挂载所有在/etc/fstab中定义的文件系统
-t 指定文件系统的类型

例如,要把设备/dev/sdb2挂载到/backup目录,只需要在mount命令中填写设备与挂载目录参数就行,系统会自动去判断要挂载文件的类型,因此只需要执行下述命令即可:

[[email protected] ~]# mount /dev/sdb2 /backup

虽然按照上面的方法执行mount命令后就能立即使用文件系统了,但系统在重启后挂载就会失效,也就是说我们需要每次开机后都手动挂载一下。这肯定不是我们想要的效果,如果想让硬件设备和目录永久地进行自动关联,就必须把挂载信息按照指定的填写格式“设备文件 挂载目录 格式类型 权限选项 是否备份 是否自检”(各字段的意义见表6-4)写入到/etc/fstab文件中。这个文件中包含着挂载所需的诸多信息项目,一旦配置好之后就能一劳永逸了。

表6-4                        用于挂载信息的指定填写格式中,各字段所表示的意义

字段 意义
设备文件 一般为设备的路径+设备名称,也可以写唯一识别码(UUID,Universally Unique Identifier)
挂载目录 指定要挂载到的目录,需在挂载前创建好
格式类型 指定文件系统的格式,比如Ext3、Ext4、XFS、SWAP、iso9660(此为光盘设备)等
权限选项 若设置为defaults,则默认权限为:rw, suid, dev, exec, auto, nouser, async
是否备份 若为1则开机后使用dump进行磁盘备份,为0则不备份
是否自检 若为1则开机后自动进行磁盘自检,为0则不自检

如果想将文件系统为ext4的硬件设备/dev/sdb2在开机后自动挂载到/backup目录上,并保持默认权限且无需开机自检,就需要在/etc/fstab文件中写入下面的信息,这样在系统重启后也会成功挂载。

[[email protected] ~]# vim /etc/fstab
#
# /etc/fstab
# Created by anaconda on Wed May 4 19:26:23 2017
#
# Accessible filesystems, by reference, are maintained under ‘/dev/disk‘
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/rhel-root / xfs defaults 1 1
UUID=812b1f7c-8b5b-43da-8c06-b9999e0fe48b /boot xfs defaults 1 2
/dev/mapper/rhel-swap swap swap defaults 0 0
/dev/cdrom /media/cdrom iso9660 defaults 0 0
/dev/sdb2 /backup ext4 defaults 0 0

umount命令用于撤销已经挂载的设备文件,格式为“umount [挂载点/设备文件]”。我们挂载文件系统的目的是为了使用硬件资源,而卸载文件系统就意味不再使用硬件的设备资源;相对应地,挂载操作就是把硬件设备与目录进行关联的动作,因此卸载操作只需要说明想要取消关联的设备文件或挂载目录的其中一项即可,一般不需要加其他额外的参数。我们来尝试手动卸载掉/dev/sdb2设备文件:

[[email protected] ~]# umount /dev/sdb2

出现问题?大胆提问!

因读者们硬件不同或操作错误都可能导致实验配置出错,请耐心再仔细看看操作步骤吧,不要气馁~

Linux技术交流请加A群:560843(),B群:340829(推荐),C群:463590(推荐),点此查看全国群

*本群特色:通过口令验证确保每一个群员都是《Linux就该这么学》的读者,答疑更有针对性,不定期免费领取定制礼品。

6.5 添加硬盘设备

根据前文讲解的与管理硬件设备相关的理论知识,我们先来理清一下添加硬盘设备的操作思路:首先需要在虚拟机中模拟添加入一块新的硬盘存储设备,然后再进行分区、格式化、挂载等操作,最后通过检查系统的挂载状态并真实地使用硬盘来验证硬盘设备是否成功添加。

鉴于我们不需要为了做这个实验而特意买一块真实的硬盘,而是通过虚拟机软件进行硬件模拟,因此这再次体现出了使用虚拟机软件的好处。具体的操作步骤如下。

第1步:首先把虚拟机系统关机,稍等几分钟会自动返回到虚拟机管理主界面,然后单击“编辑虚拟机设置”选项,在弹出的界面中单击“添加”按钮,新增一块硬件设备,如图6-6所示。

图6-6  在虚拟机系统中添加硬件设备

第2步:选择想要添加的硬件类型为“硬盘”,然后单击“下一步”按钮就可以了,这确实没有什么需要进一步解释的,如图6-7所示。

图6-7  选择添加硬件类型

第3步:选择虚拟硬盘的类型为SCSI(默认推荐),并单击“下一步”按钮,这样虚拟机中的设备名称过一会儿后应该为/dev/sdb,如图6-8所示。

图6-8  选择硬盘设备类型

第4步:选中“创建新虚拟磁盘”单选按钮,而不是其他选项,再次单击“下一步”按钮,如图6-9所示。

图6-9  选择“创建新虚拟磁盘”选项

第5步:将“最大磁盘大小”设置为默认的20GB。这个数值是限制这台虚拟机所使用的最大硬盘空间,而不是立即将其填满,因此默认20GB就很合适了。单击“下一步”按钮,如图6-10所示。

图6-10  设置硬盘的最大使用空间

第6步:设置磁盘文件的文件名和保存位置(这里采用默认设置即可,无需修改),直接单击“完成”按钮,如图6-11所示。

图6-11  设置磁盘文件的文件名和保存位置

第7步:将新硬盘添加好后就可以看到设备信息了。这里不需要做任何修改,直接单击“确认”按钮后就可以开启虚拟机了,如图6-12所示。

图6-12  查看虚拟机硬件设置信息

在虚拟机中模拟添加了硬盘设备后就应该能看到抽象成的硬盘设备文件了。按照前文讲解的udev服务命名规则,第二个被识别的SCSI设备应该会被保存为/dev/sdb,这个就是硬盘设备文件了。但在开始使用该硬盘之前还需要进行分区操作,例如从中取出一个2GB的分区设备以供后面的操作使用。

1.  fdisk命令

在Linux系统中,管理硬盘设备最常用的方法就当属fdisk命令了。fdisk命令用于管理磁盘分区,格式为“fdisk  [磁盘名称]”,它提供了集添加、删除、转换分区等功能于一身的“一站式分区服务”。不过与前面讲解的直接写到命令后面的参数不同,这条命令的参数(见表6-5)是交互式的,因此在管理硬盘设备时特别方便,可以根据需求动态调整。

表6-5                                              fdisk命令中的参数以及作用

参数 作用
m 查看全部可用的参数
n 添加新的分区
d 删除某个分区信息
l 列出所有可用的分区类型
t 改变某个分区的类型
p 查看分区表信息
w 保存并退出
q 不保存直接退出

第1步:我们首先使用fdisk命令来尝试管理/dev/sdb硬盘设备。在看到提示信息后输入参数p来查看硬盘设备内已有的分区信息,其中包括了硬盘的容量大小、扇区个数等信息:

[[email protected] ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table
Building a new DOS disklabel with disk identifier 0x47d24a34.
Command (m for help): p
Disk /dev/sdb: 21.5 GB, 21474836480 bytes, 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x47d24a34
Device Boot Start End Blocks Id System

第2步:输入参数n尝试添加新的分区。系统会要求您是选择继续输入参数p来创建主分区,还是输入参数e来创建扩展分区。这里输入参数p来创建一个主分区:

Command (m for help): n
Partition type:
p primary (0 primary, 0 extended, 4 free)
e extended
Select (default p): p

第3步:在确认创建一个主分区后,系统要求您先输入主分区的编号。我们在前文得知,主分区的编号范围是1~4,因此这里输入默认的1就可以了。接下来系统会提示定义起始的扇区位置,这不需要改动,我们敲击回车键保留默认设置即可,系统会自动计算出最靠前的空闲扇区的位置。最后,系统会要求定义分区的结束扇区位置,这其实就是要去定义整个分区的大小是多少。我们不用去计算扇区的个数,只需要输入+2G即可创建出一个容量为2GB的硬盘分区。

Partition number (1-4, default 1): 1
First sector (2048-41943039, default 2048):此处敲击回车
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-41943039, default 41943039): +2G
Partition 1 of type Linux and of size 2 GiB is set

第4步:再次使用参数p来查看硬盘设备中的分区信息。果然就能看到一个名称为/dev/sdb1、起始扇区位置为2048、结束扇区位置为4196351的主分区了。这时候千万不要直接关闭窗口,而应该敲击参数w后回车,这样分区信息才是真正的写入成功啦。

Command (m for help): p
Disk /dev/sdb: 21.5 GB, 21474836480 bytes, 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x47d24a34
Device Boot Start End Blocks Id System
/dev/sdb1 2048 4196351 2097152 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

第5步:在上述步骤执行完毕之后,Linux系统会自动把这个硬盘主分区抽象成/dev/sdb1设备文件。我们可以使用file命令查看该文件的属性,但是刘遄老师在讲课和工作中发现,有些时候系统并没有自动把分区信息同步给Linux内核,而且这种情况似乎还比较常见(但不能算作是严重的bug)。我们可以输入partprobe命令手动将分区信息同步到内核,而且一般推荐连续两次执行该命令,效果会更好。如果使用这个命令都无法解决问题,那么就重启计算机吧,这个杀手锏百试百灵,一定会有用的。

[[email protected] ]# file /dev/sdb1
/dev/sdb1: cannot open (No such file or directory)
[[email protected] ]# partprobe
[[email protected] ]# partprobe
[[email protected] ]# file /dev/sdb1
/dev/sdb1: block special

如果硬件存储设备没有进行格式化,则Linux系统无法得知怎么在其上写入数据。因此,在对存储设备进行分区后还需要进行格式化操作。在Linux系统中用于格式化操作的命令是mkfs。这条命令很有意思,因为在Shell终端中输入mkfs名后再敲击两下用于补齐命令的Tab键,会有如下所示的效果:

[[email protected] ~]# mkfs
mkfs mkfs.cramfs mkfs.ext3 mkfs.fat mkfs.msdos mkfs.xfs
mkfs.btrfs mkfs.ext2 mkfs.ext4 mkfs.minix mkfs.vfat

对!这个mkfs命令很贴心地把常用的文件系统名称用后缀的方式保存成了多个命令文件,用起来也非常简单—mkfs.文件类型名称。例如要格式分区为XFS的文件系统,则命令应为mkfs.xfs /dev/sdb1。

[[email protected] ~]# mkfs.xfs /dev/sdb1
meta-data=/dev/sdb1 isize=256 agcount=4, agsize=131072 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=0
data = bsize=4096 blocks=524288, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=0
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

终于完成了存储设备的分区和格式化操作,接下来就是要来挂载并使用存储设备了。与之相关的步骤也非常简单:首先是创建一个用于挂载设备的挂载点目录;然后使用mount命令将存储设备与挂载点进行关联;最后使用df -h命令来查看挂载状态和硬盘使用量信息。

[[email protected] ~]# mkdir /newFS
[[email protected] ~]# mount /dev/sdb1 /newFS/
[[email protected] ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rhel-root 18G 3.5G 15G 20% /
devtmpfs 905M 0 905M 0% /dev
tmpfs 914M 140K 914M 1% /dev/shm
tmpfs 914M 8.8M 905M 1% /run
tmpfs 914M 0 914M 0% /sys/fs/cgroup
/dev/sr0 3.5G 3.5G 0 100% /media/cdrom
/dev/sda1 497M 119M 379M 24% /boot
/dev/sdb1 2.0G 33M 2.0G 2% /newFS

2.  du命令

既然存储设备已经顺利挂载,接下来就可以尝试通过挂载点目录向存储设备中写入文件了。在写入文件之前,先介绍一个用于查看文件数据占用量的du命令,其格式为“du [选项] [文件]”。简单来说,该命令就是用来查看一个或多个文件占用了多大的硬盘空间。我们还可以使用du -sh /*命令来查看在Linux系统根目录下所有一级目录分别占用的空间大小。下面,我们先从某些目录中复制过来一批文件,然后查看这些文件总共占用了多大的容量:

[[email protected] ~]# cp -rf /etc/* /newFS/
[[email protected] ~]# ls /newFS/
abrt hosts pulse
adjtime hosts.allow purple
aliases hosts.deny qemu-ga
aliases.db hp qemu-kvm
alsa idmapd.conf radvd.conf
alternatives init.d rc0.d
anacrontab inittab rc1.d
………………省略部分输入信息………………
[[email protected] ~]# du -sh /newFS/
33M /newFS/

细心的读者一定还记得,前面在讲解mount命令时提到,使用mount命令挂载的设备文件会在系统下一次重启的时候失效。如果想让这个设备文件的挂载永久有效,则需要把挂载的信息写入到配置文件中:

[[email protected] ~]# vim /etc/fstab
#
# /etc/fstab
# Created by anaconda on Wed May 4 19:26:23 2017
#
# Accessible filesystems, by reference, are maintained under ‘/dev/disk‘
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/rhel-root / xfs defaults 1 1
UUID=812b1f7c-8b5b-43da-8c06-b9999e0fe48b /boot xfs defaults 1 2
/dev/mapper/rhel-swap swap swap defaults 0 0
/dev/cdrom /media/cdrom iso9660 defaults 0 0
/dev/sdb1 /newFS xfs defaults 0 0



原文地址:https://www.cnblogs.com/doudou3680/p/12043724.html

时间: 2024-11-06 11:26:33

十、存储结构与磁盘划分(一)的相关文章

RHCE 第9节课 存储结构与磁盘划分

今天跟老师学习了新的一章内容,存储结构与磁盘划分,其中有磁盘的结构特点,还有如何分区,格式化和挂载文件系统,要多多练习才能更快掌握知识. 原文地址:https://blog.51cto.com/12331786/2453455

第六章 存储结构和磁盘划分 第6天 7月21日

存储结构和磁盘划分 Linux里的所有硬件设备都被抽象成了文件.如打印机,套接字,块设备,字符设备等. linux里文件是按照FHS 文件层次化目录来存储的. \ 从根目录开始. 文件名严格区分大小写,不得包含/ 文件夹都有常有用途. 常见目录名称以及相应内容. 系统启动必须: /boot:存放的启动Linux 时使用的内核文件,包括连接文件以及镜像文件. /etc:存放所有的系统需要的配置文件和子目录列表,更改目录下的文件可能会导致系统不能启动. /lib:Library的缩写存放基本代码库(

《Linux就该这么学》 第6章 存储结构与磁盘划分

6.1 一切从"/"开始Linux系统中的一切文件都是从"根(/)"目录开始的,并按照文件系统层次化标准(FHS)采用树形结构来存放文件,以及定义了常见目录的用途.另外,Linux系统中的文件和目录名称是严格区分大小写的.例如,root.rOOt.Root.rooT均代表不同的目录,并且文件名称中不得包含斜杠(/).Linux系统中的文件存储结构如图6-1所示. 表6-1 Linux系统中常见的目录名称以及相应内容目录名称应放置文件的内容/boot开机所需文件-内核

第6章 存储结构与磁盘划分

章节简述: 本章节从Linux系统的存储结构引入,讲述硬盘存储结构.硬件命名规则以及内核Udev设备管理器服务. 让读者理解文件系统的作用,能够区分ext3,ext4,xfs有何不同并学习将硬盘设备分区.格式化以及挂载等常用硬盘管理操作. 完整配置SWAP交换分区.quota服务限制磁盘配额.ln命令创建软/硬链接.RAID磁盘阵列(0.1.5和10).LVM逻辑卷管理器. 本章目录结构 6.1 一切从“/”开始 6.2 物理设备的命名规则 6.3 文件系统与数据资料 6.4 挂载硬件设备 6.

存储结构与磁盘划分

在Linux系统中,通常用文件系统层次标准化服务FHS(filesystem hierarchy Standard)和udev硬件命名规则来规划文件存储结构."/" 表示根目录开始,正如那句话"Linux系统中的一切都是文件" 物理设备的命名规范udev服务目的在于让用户通过设备文件的名字来判断设备属性及分区信息一般对于硬盘来说是由多个扇区组成,而一个扇区可以分为主分区.扩展分区.逻辑分区注意:/dev/sd [a-p] 这里a-p表示的是系统识别到的顺序(依次表示

Linux 存储结构与磁盘划分

主要常见的目录定义 /boot             开机所需文件----内核,开机菜单及所需配置文件 /dev              任何设备与接口都以文件形式存放在这目录 /etc               配置文件 /home             用户主目录 /bin               单用户维护模式下还能够被操作的命令 /lib                开机时用到的函数库及/bin与/sbin下面命令要调用的函数 /sbin               开机过

存储结构与磁盘划分。

添加硬盘设备fdisk命令创建分区使用file命令查看该文件的属性硬件存储设备没有进行格式,进行格式化可以使用du -sh /*命令来查看在Linux系统根目录下所有一级目录分别占用的空间大小.让这个设备文件的挂载永久有效,则需要把挂载的信息写入到配置文件中添加SWAP交换分区创建新分区 创建完毕后保存并退出即可使用SWAP分区专用的格式化命令mkswap,对新建的主分区进行格式化操作:我们可以使用free -m命令查看交换分区的大小变化为了能够让新的交换分区设备的挂载永久有效,则需要把挂载的信

7Linux存储结构和磁盘划分

FHS yum的.repo的配置文件多个的话,是依次生效吗? /boot 开机所需文件—内核.开机菜单以及所需配置文件等/dev 以文件形式存放任何设备与接口/etc 配置文件/home 用户主目录/bin 存放单用户模式下还可以操作的命令/lib 开机时用到的函数库,以及/bin与/sbin下面的命令要调用的函数/sbin 开机过程中需要的命令/media 用于挂载设备文件的目录/opt 放置第三方的软件/root 系统管理员的家目录/srv 一些网络服务的数据文件目录/tmp 任何人均可使用

Linux学习《第六章存储结构与磁盘划分》练习-挂载硬盘并分区

原文地址:https://www.cnblogs.com/liujinxing166/p/12386452.html