算法浅谈——递归算法与海盗分金问题

本文始发于个人公众号:TechFlow

最近看到一道很有意思的问题,分享给大家。

还是老规矩,在我们聊算法问题之前,先来看一个故事。

传说中,有5个海盗组成了一支无敌的海盗舰队,他们在最后一次的寻宝当中找寻到了100枚价值连城的金币。于是,很自然的,这群海盗面临分赃的问题。为了防止海盗内讧,残忍的海盗们制定了一个奇怪的规则:

他们决定按照功劳大小对五个人进行编号,由编号小的海盗先提出分配方案。如果方案能够得到大多数人的同意,那么就按照他提出的方案进行分配。如果不能通过,说明他已经失去了威望,海盗们会残忍地将他投入海中喂鲨鱼

在一个朦胧的早上你一觉醒来,突然发现自己成了一号海盗,那么你应该如何分配才能获得最多的金币,又不会被喂鲨鱼呢?

在我们思考之前,我们先完善一下题意,增加几个条件

首先,每一个海盗都非常残忍。这意味着,在不影响收益的情况下,他们会更倾向于杀人。

其次,每一个海盗都极其聪明,都能想到最佳答案。

这两个条件一出来,问题就比较明显了,这是博弈论题目才有的架势。

既然这是一道博弈论的问题,那么我们通过常规的思路是无法找到答案的,我们需要另辟蹊径才行。

那么,怎么另辟蹊径呢?

一个比较常规的做法是先不考虑原问题,先假设一个和原问题差不多,但是规模小很多的子问题。通过对子问题的求解来摸索原问题的解法。

举个例子,在这题当中,我们需要计算5个海盗分金币的情况。一时之间我们有些无从下手,那么我们简化问题,问题的规则还是不变,但是我们把海盗的数量减少,减少到只有一个海盗。那么根据规则,很显然,最后的结果是这个海盗独吞所有的金币。

这个时候的分配方案是:[0, 0, 0, 0, 100]

我们从这个点开始往回倒推,假设这个时候多了一个海盗,一共是4号和5号两个海盗的时候,会怎么样?

显然因为要求要一半以上同意提案,提案才可以通过。所以在这个时候,无论4号海盗如何提议,5号都不会同意,要将他投下海喂鲨鱼。所以如果只剩下4和5的时候,4号海盗必死无疑。

这个时候的分配方案是: [0, 0, 0, -1, 100],-1表示必死无疑

那如果再加一个海盗呢?

再加一个海盗的话,是3,4,5三个海盗的情况。因为只剩4和5的时候4号必死,所以他为了活命一定会同意3号的提案(海盗对其他人残忍,对自己不残忍)。这个时候,3号不论如何提议,都一定可以通过。因为算上他自己的一票,和4号的一票,已经过半了,所以他的提案一定可以通过。

这个时候的分配方案是: [0, 0, 100, 0, 0]

我们再加入一个海盗,考虑一共剩下4个海盗的情况。如果2号死去,那么3号可以独吞所有金币,所以显然3号一定不会同意2号的方案。4个人的时候,至少需要3个人同意才可以通过方案,那么2号必须要争取4号和5号。如果2号死去,4号和5号一无所有,所以2号只需要分配给4号和5号一枚金币,就可以拉拢他们。

这个时候的分配方案是: [0, 98, 0, 1, 1]

最后,我们再加入1号海盗。同理,1号海盗的提案需要至少3个人通过。算上他自己,他还需要争取2票。由于1号死去2号可以获得98枚金币,所以1号一定无法争取2号,还是只能从3,4,5三个人下手。可以给3号1枚,4号两枚(比2号的方案多一枚),也可以给3号1没,5号两枚。

这个时候的分配方案是: [97, 0, 1, 2, 0] 或者是 [97, 0, 1, 0, 2]。

到这里,这个问题就结束了。但是我们的思考并没有结束,不知道大家从刚才的解法当中有没有看出规律。我们面临5个海盗这种错综复杂情况的时候根本无从下手,但是一旦当我们试着将问题的规模缩小,从简单的情况开始思考,那么问题一下子就豁然开朗了。

老子说:天下大事,必作于细,天下难事,必作于易。从这个问题来看,和这个道理相得益彰。

这种从最简单推导最复杂的算法就称为递归

假设,获取n个海盗分配方案的函数是f。当我们计算f(2)时,我们需要根据f(1)的结果。我们试着写成伪代码:

def f(n):
  if n == 1:
    return [0, 0, 0, 0, 100]
  else:
    allocation = f(n-1)
    # 新的分配
    new_allocation = allocate(allocation)
    return new_allocation

我们先忽略allocate这个方法内部是怎么实现的,单纯看这段代码,整个框架已经有了。

递归的精髓也就在这里,程序自己调用自己只是表象,内里的精髓其实是问题的分割。整个递归从上到下的过程,其实是一个大问题化解成小问题的过程。如果还不明白,我们再来看一个经典的例子来巩固一下,这个问题就是大名鼎鼎的汉诺塔问题:

在印度神话当中有一个大神叫做梵天,他在创造世界的时候创造了三根金刚柱。为了排解无聊,他在其中一根柱子上摆放了64个圆盘。这64个圆盘从上往下依次增大,他给僧侣出了一个问题。一次只能移动一个圆盘,并且圆盘只能放在比它大的圆盘上,该怎么做才能将圆盘从一根柱子移动到另一根呢?

为了简化问题,我们先观察摆放5个圆盘的情况。从图中可以看出来,一开始的时候圆盘都在A柱,如果我们想要将圆盘移动到B柱应该怎么办呢?

我们同样先来观察最简单的情况: A柱上只有一个圆盘,那很简单,我们直接将它移动到B柱即可。如果有两个圆盘呢?我们需要先将第一个移动到C柱,然后将第二个移动到B柱,最后再将C柱上的圆盘移动到B。那如果是三个圆盘呢,稍微复杂一些,但仔细列举一下,也能算得出来。

但是我们怎么通过问题规模的缩小来化简问题呢?

这需要我们对于题目进行深入思考,找到其中的关键点。这题的关键点就是圆盘的限制,大的圆盘不能落在小的圆盘上面。所以如果我们想要将n个圆盘从A柱移动到B柱,必须要将前n-1个圆盘先移动到C柱,这样才可以将最大的那块放到B,如此之后再将n-1块移动回B。

也就是说,我们将n-1块圆盘当做是一个整体,这样n块圆盘的方案就和两块圆盘时一样了。这就通过递归完成了简化。

最后,也是最关键的,怎么移动n-1块圆盘呢?其实很简单,我们套用同样的方法,再将这n-1块圆盘中的n-2块看成是整体,递归操作。理解了之后,不妨试着写出代码,其实只有几行:

def hanoi_tower(num, tower_start, tower_dest, tower_other):
  if num == 1:
    print('move plate {} from {} to {}'.format(num, tower_start, tower_dest))
    return
  hanoi_tower(num-1, tower_start, tower_other, tower_dest)
  print('move plate {} from {} to {}'.format(num, tower_start, tower_dest))
  hanoi_tower(num-1, tower_other, tower_dest, tower_start)

我们调用一下这个方法,进行一下测试:

结果和我们的预期一致,说明我们的算法是正确的。

最后,我们再回到海盗问题,又该怎么用代码实现呢?感兴趣的同学不妨亲自动手试试,如果实在写不出代码,在公众号回复关键词”海盗分金“查看我写的代码。

今天的文章就到这里,扫码关注我的公众号:TechFlow,获取更多文章

原文地址:https://www.cnblogs.com/techflow/p/12230180.html

时间: 2024-08-06 22:03:36

算法浅谈——递归算法与海盗分金问题的相关文章

海盗分金问题SQL求解(贪心算法)

问题 经济学上有个"海盗分金"模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推,假设海盗是足够聪明的先利己再伤人,最后方案是怎样的? 网上百度来的的代码 with a as (select 101 - rownum n from dual connect by rownum <102), max_one as (select max(n) max1 from a),

海盗分金的问题

海盗分金好像是个博弈论的老问题了. 本科的时候听GXL谈到过问题本身,没有去解.昨天,LX问到我这个问题.思考了一下解法,不知道对不对,写在这里. 流行的问题是这样: 五个海盗抢到了100枚金币,他们决定这么分: 1.抽签决定自己的号码 :5  4  3  2  1: 2.首先,由5号提出分配方案,然后5人共同进行表决,如果有半数或半数以上人同意时,就按照他的提案进行分配,否则5号将被扔入大海喂鲨鱼: 3.在5号死后,由4号提出分配方案,然后4人进行表决,如果有半数或半数以上人同意时,就按照他的

海盗分金问题(博弈)

NBUOJ 2680:海盗分金 题意: 有N个海盗要分M金币,将N个海盗从1-N编号,由第一个人提出分配方案,一人一票(分配者也拥有一票),超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,接下来由下一人分配,以此类推. 分析:从3个人的状态往后推,每次处理出当前分配方案下的被分到0,1 金币的海盗数量,当前被分到0,下次并然分到1,当前分到1的判断是否需要分配2才能满足通过条件,最后输出分配剩余的金币数即可. 代码: 1 #include "cstdio" 2 #include &

海盗分金的故事

两周时间,身体疲惫的要死. 近来,每晚一梦的习惯又开始了. 昨晚,睡了好久,做了很诡异的梦,把自己纠缠到醒之后,好想拿起手机问问是不是很多人都在看世界杯. 朦胧中细想,这还用问么?楼上还有声音,估计正在等待看巴西和德国大战. ---------------------------------分割线---------------------------------------- 海盗分金,是一个经济学问题.整个故事喜感到爆,原理是用最小代价获取最大利益.但,前提是每个人都必须是智商高到爆. 假如任

HDU 1538 A Puzzle for Pirates (海盗分金问题)

A Puzzle for Pirates Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 508    Accepted Submission(s): 167 Problem Description A bunch of pirates have gotten their hands on a hoard of gold pieces a

Kmp算法浅谈

Kmp算法浅谈 一.Kmp算法思想 在主串和模式串进行匹配时,利用next数组不改变主串的匹配指针而是改变模式串的匹配指针,减少大量的重复匹配时间.在Kmp算法中,next数组的构建是整个Kmp算法的核心所在. 二.Kmp核心之next数组的构建 (1)前缀,后缀的定义 (2)最长公共前后缀定义 (3)next数组的含义 next数组代表各个长度子串(这些字串的起始位置都为0)的最长公共前后缀长度,为了方便代码的编写next[0]定为-1,表示前0个字符根本不存在前后缀这一说法.其他的例如nex

NYOJ 994 海盗分金 逆向递推

链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=994 题意: 有n个海盗劫得了窖藏的m块金子,并准备瓜分这些战利品.按照古老流传下来的分金法则,由最厉害的一名海盗提出一个分金方案,假如有不小于一半的海盗(包括自己)支持这个方案,则按这个方案分,否则把这个海盗扔进海里,重复由下一个厉害的海盗提出方案. 大家都知道,所有海盗都是贪婪的,虽然他们都乐于看到自己的同伴被扔进海里,但是他们还是希望在保命的前提下分的最多的金子,现在已经按海盗的厉害程

算法浅谈——分治算法与归并、快速排序(附代码和动图演示)

在之前的文章当中,我们通过海盗分金币问题详细讲解了递归方法. 我们可以认为在递归的过程当中,我们通过函数自己调用自己,将大问题转化成了小问题,因此简化了编码以及建模.今天这篇文章呢,就正式和大家聊一聊将大问题简化成小问题的分治算法的经典使用场景--排序. 排序算法 排序算法有很多,很多博文都有总结,号称有十大经典的排序算法.我们信手拈来就可以说上来很多,比如插入排序.选择排序.桶排序.希尔排序.快速排序.归并排序等等.老实讲这么多排序算法,但我们实际工作中并不会用到那么多,凡是高级语言都有自带的

海盗分金

/* 5个海盗抢到了100颗宝石,每一颗都一样的大小和价值. 他们决定这么分: 1.抽签决定自己的号码(1,2,3,4,5) 2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼. 3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼. 4.以次类推...... 条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择.