题目描述
老C的键盘
题解
显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数
根据这一特性想到了啥??? 感谢leo101的友情点拨
二叉树!!!
所以可以把 x/2 看做是 x的父亲, 1 显然就是根
可以把 < 看作是由父亲连向儿子的有向边, > 看作是儿子连向父亲的有向边
所以就是求这棵树的拓扑序的方案数就好了!!!
考虑当前节点的两棵子树都已处理完的时候
在满足和 当前节点的关系的同时, 两颗子树在拓扑序中出现的顺序显然是没有影响的,所以按照子树大小组合数乱搞就好了
然后设 dp[i][j] 表示 i 号节点在当前子树排在第 j 位的方案数就好了
代码
#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define in inline
#define get getchar()
in int read()
{
int t=0; char ch=get;
while (ch<'0' || ch>'9') ch=get;
while (ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t;
}
const int mod=1e9+7;
const int _=1010;
ll n,dp[_][_],c[_][_],siz[_]; //siz[i]是以i为根的子树节点个数, c[][]是组合数
char s[_];
in void dfs(ll x)
{
for(re int to=2*x;to<=min(n,2*x+1);to++)
{
dfs(to);
if(s[to]=='>')
{
for(re ll k=siz[x]+siz[to]; k>=1; k--)
{
ll sum=0;
for( re int i=1; i<=min(siz[x],k); i++)
{
for (re int j=k-i+1;j<=siz[to];j++)
{
ll a=(dp[x][i]*dp[to][j])%mod;
ll b=(c[i-1][k-1]*c[siz[x]-i][siz[x]+siz[to]-k])%mod;
a=(a*b)%mod;
sum=(sum+a)%mod;
}
}
dp[x][k]=sum;
}
}
else
{
for(re ll k=siz[x]+siz[to]; k>=1; k--)
{
ll sum=0;
for(re int i=1; i<=min(siz[x],k); i++)
for(re int j=1; j<=min(k-i,siz[to]); j++)
{
ll a=(dp[x][i]*dp[to][j])%mod;
ll b=(c[i-1][k-1]*c[siz[x]-i][siz[x]+siz[to]-k])%mod;
a=(a*b)%mod;
sum=(sum+a)%mod;
}
dp[x][k]=sum;
}
}
siz[x]+=siz[to]; //子树大小统计
}
}
int main()
{
n=read();
scanf("%s",s+2);
c[0][0]=1;
for (re int i=1; i<=n; i++)
{
c[0][i]=1,c[i][i]=1;
dp[i][1]=1,siz[i]=1;
for (re int j=1; j<i; j++) c[j][i]=(c[j][i-1]+c[j-1][i-1])%mod;
} //预处理组合数
dfs(1);
ll ans=0;
for (re int i=1; i<=n; i++) ans=(ans+dp[1][i])%mod; //因为一号节点是整棵树的根
cout<<ans<<endl;
return 0;
}
原文地址:https://www.cnblogs.com/yzhx/p/10643461.html
时间: 2024-10-11 20:43:55