L330 Black hole picture captured for first time in space ‘breakthrough’

Black hole picture captured for first time in space ‘breakthrough’

Astronomers have captured the first image of a black hole, heralding a revolution in our understanding of the universe’s most enigmatic objects.

The picture shows a halo of dust and gas, tracing the outline of a colossal black hole, at the heart of the Messier 87 galaxy, 55 million light years from Earth.

The black hole itself – a cosmic trapdoor from which neither light nor matter can escape – is unseeable. But the latest observations take astronomers right to its threshold for the first time, illuminating the event horizon beyond which all known physical laws collapse.

The breakthrough image was captured by the Event Horizon Telescope (EHT), a network of eight radio telescopes spanning locations from Antarctica to Spain and Chile, in an effort involving more than 200 scientists.
Sheperd Doeleman, Event Horizon Telescope Director and Harvard University senior research fellow said: “Black holes are the most mysterious objects in the universe. We have seen what we thought was unseeable. We have taken a picture of a black hole.”

The image gives the first direct glimpse of a black hole’s accretion disk, a fuzzy doughnut-shaped ring of gas and dust that steadily “feeds” the monster within.

The EHT picks up radiation emitted by particles within the disk that are heated to billions of degrees as they swirl around the black hole at close to the speed of light, before vanishing down the plughole.

The halo’s crescent-like appearance in the image is because the particles in the side of the disk rotating towards Earth are flung towards us faster and so appear brighter. The dark shadow within marks the edge of the event horizon, the point of no return, beyond which no light or matter can travel fast enough to escape the inexorable gravitational pull of the black hole.

Black holes were first predicted by Einstein’s theory of relativity – although Einstein himself was sceptical that they actually existed. Since then, astronomers have accumulated overwhelming evidence that these cosmic sinkholes are out there, including recent detection of gravitational waves that ripple across the cosmos when pairs of them collide.

But black holes are so small, dark and distant that observing them directly requires a telescope with a resolution equivalent to being able to see a bagel on the moon. This was once thought to be an insurmountable challenge.

The EHT achieved the necessary firepower by combining data from eight of the world’s leading radio observatories, including the Atacama Large Millimetre Array (Alma) in Chile and the South Pole Telescope, creating an effective telescope the size of the Earth.

When observations were launched in 2017, the EHT had two primary targets. First was Sagittarius A*, the black hole at the centre of the Milky Way, which has a mass of about four million suns. The second target, which yielded the image, was a supermassive black hole in the galaxy M87, into which the equivalent of six billion suns of light and matter has disappeared.

The success of the project hinged on clear skies on several continents simultaneously and exquisite coordination between the eight far-flung teams. Observations at the different sites were coordinated using atomic clocks, called hydrogen masers, accurate to within one second every 100 million years. And, on one night in 2017, everything came together. “We got super lucky, the weather was perfect,” said Ziri Younsi, a member of the EHT collaboration who is based at University College London.

The sheer volume of data generated was also unprecedented – in one night the EHT generated as much data as the Large Hadron Collider does in a year. This meant waiting for months for the South Pole data, which could only be shipped out at the end of Antarctic winter.

The observations are already giving scientists new insights into the weird environment close to black holes, where gravity is so fierce that reality as we know it is distorted beyond recognition.

At the event horizon, light is bent in a perfect loop around the black hole, meaning if you stood there you would be able to see the back of your own head. They also provide one of the most stringent tests to date of Einstein’s theory of general relativity: this predicts a rounded shape of the black hole’s halo, in line with what EHT has observed.

Scientists are also hoping to understand more about the origin of jets of radiation that are blasted out from the poles of some black holes at close to the speed of light, creating brilliant beacons that can be picked out across the cosmos.

However, the observations do not yet reveal anything about the black hole’s inscrutable interior.
“The black hole is not the event horizon, it’s something inside. It could be something just inside the event horizon, an exotic object hovering just beneath the surface, or it could be a singularity at the centre … or a ring,” said Younsi. “It doesn’t yet give us an explanation of what’s going on inside.”

Heino Falcke, chair of the EHT science council, who is based at Radboud University in the Netherlands, said: “The big question for me is whether we’ll ever be able to transcend that limit. The answer may be maybe not. That’s frustrating but we’ll have to accept it.”

原文地址:https://www.cnblogs.com/huangbaobaoi/p/10687971.html

时间: 2024-12-17 16:36:37

L330 Black hole picture captured for first time in space ‘breakthrough’的相关文章

Hdu 3177 Crixalis's Equipment

Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2795    Accepted Submission(s): 1141 Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts

hdu 3177 Crixalis's Equipment(贪心)

Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts of Kalimdor. Though he's a guardian of Lich King now, he keeps the living habit of a scorpion like living underground and digging holes. Someday Crixalis decides

hdoj 3177 Crixalis's Equipment 【贪心】

Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3073    Accepted Submission(s): 1250 Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts

Crixalis's Equipment

Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3097 Accepted Submission(s): 922 Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts of Kal

Linux内存管理 - PAGE_OFFSET理解

PAGE_OFFSET 代表的是内核空间和用户空间对虚拟地址空间的划分,对不同的体系结构不同.比如在32位系统中3G-4G 属于内核使用的内存空间,所以 PAGE_OFFSET = 0xC0000000.在X86-64架构下是ffff880000000000.可以看到内核程序可以可以访问从PAGE_OFFSET 之后的内存,访问所有的信息(注意页的写保护). 参考:https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt Virtual

杭电 3177 Crixalis's Equipment

http://acm.hdu.edu.cn/showproblem.php?pid=3177 Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2562    Accepted Submission(s): 1056 Problem Description Crixalis - Sand King

hdu 3177 Crixalis's Equipment

Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2562    Accepted Submission(s): 1056 Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts

HDUJ 3177 Crixalis's Equipment 贪心

Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2568    Accepted Submission(s): 1059 Problem Description Crixalis - Sand King used to be a giant scorpion(蝎子) in the deserts

Hole puncher Show Picture

import sys reload(sys) sys.setdefaultencoding('utf8') import matplotlib.pyplot as plt import string file = open("GD.txt") i = 0 x = range(0) y = range(0) for line in file: x.append(string.atoi(line[0:7], 10)) y.append(string.atoi(line[8:], 10))