Description
We all love recursion! Don‘t we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1 ------------------------------------------------------------------------------------------------------------------------------------------这道题与递归相关,为入门级难度。对于规模递减缓慢的递归问题来说,存在的策略有三种:1. 记忆。当情况为可数时,可以存储中间过程计算的结果,并在其他分支的迭代式遇到同样算式时直接调用结果,如本题。2. 寻找直接求解式而非迭代式,即寻找其中的数学性质,如斐波那契数列的计算。3. 尝试是否能够把问题转化为非递归式,如二分法。
#include <stdio.h> #include <stdlib.h> /* Function Run Fun / PKU OJ / ID:1579 / 直接采用递归是低效的,此题采用记忆法,将计算出的中间量进行记忆,从而减少重复迭代造成的效率损失 */ int memory[21][21][21]; int W(int a, int b, int c) { if(a <= 0 || b <= 0 || c <= 0) { return 1; } else if(a > 20 || b > 20 || c > 20) { memory[20][20][20] = W(20, 20, 20); return memory[20][20][20]; } else if((int)memory[a][b][c] != 0) { return memory[a][b][c]; } else if(a < b && b < c) { memory[a][b][c - 1] = W(a, b, c - 1); memory[a][b - 1][c - 1] = W(a, b - 1, c - 1); memory[a][b - 1][c] = W(a, b - 1, c); return memory[a][b][c - 1] + memory[a][b - 1][c - 1] - memory[a][b - 1][c]; } else { memory[a-1][b][c] = W(a - 1, b, c); memory[a-1][b-1][c] = W(a - 1, b-1, c); memory[a-1][b][c-1] = W(a - 1, b, c-1); memory[a-1][b-1][c-1] = W(a - 1, b-1, c-1); return memory[a-1][b][c] + memory[a-1][b-1][c] + memory[a-1][b][c-1] - memory[a-1][b-1][c-1]; } } int main() { int a[100], b[100],c[100]; int index = 0; while(scanf("%d%d%d", &a[index], &b[index], &c[index]) != EOF) { if(a[index] == -1 && b[index] == -1 && c[index] == -1) { break; } index++; } int i; for(i = 0; i < index; i++) { printf("w(%d, %d, %d) = %d\n", a[i], b[i], c[i], W(a[i], b[i], c[i])); } return 0; }