《Linux内核分析》第五周

20135103王海宁

《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

这周的实验在上周实验四的基础上,进一步的操作:
1.将系统调用函数getpid命令加入menuos中
2.通过gdb跟踪sys_getpid系统调用执行的完整过程

步骤:给MenuOS增加getpid和getpid-asm命令
0)更新menu代码到最新版
1)在main函数中增加MenuConfig
2)增加对应的getpid函数和getpid-asm函数
3)make rootfs

进入实验楼环境后,敲入如下命令:

[plain] view plain copy

  1. <span style="font-size:14px;">cd LinuxKernel
  2. cd menu
  3. vi test.c</span>

进入test.c源程序后添加如下代码:

[cpp] view plain copy

  1. <span style="font-size:14px;">//添加两个函数,别忘了加头文件#include <unistd.h>
  2. int main() {
  3. pid_t tt;
  4. asm volatile (
  5. "movl $0x20, %%eax\n\t"
  6. "int $0x80\n\t"
  7. "movl %%eax, %0\n\t"
  8. :"=m"(tt)
  9. );
  10. printf("%u\n", tt);
  11. return 0;
  12. }
  13. int main() {
  14. pid_t tt;
  15. tt = getpid();
  16. printf("%u\n", tt);
  17. return 0;
  18. }</span>

[cpp] view plain copy

  1. <span style="font-size:14px;">//然后在main函数中添加
  2. MenuConfig("time","Show System Time",Time);
  3. MenuConfig("time-asm","Show System Time(asm)",TimeAsm);</span>

代码添加完成后make rootfs重新编译,此时系统会自动启动。如下图:

下面用gdb跟踪sys_getpid执行的过程:
1.执行以下命令开启内核的调试功能 qemu -kernel linux-3.18.6/arch/x86/boot/bz/Image -initrd rootfs.img -s -S,此时系统处于停止状态
2.再打开一个命令行窗口输入gdb,在gdb命令提示符下依次输入file linux-3.18.6/vmlinux, target remote:1234命令连接内核并跟踪调试
3.设置断点break sys_getpid, 接着continue开始运行,此时menuOS从stopped状态开始执行。在menu程序的提示符下输入who,程序执行到断点时暂停,此时gdb窗口显示程序断在sys_getpid处
4.接着使用gdb单步执行命令。next:不进入函数体的单步执行;step:进入函数体的单步执行;finish:进入函数体后退回调用函数

分析
中断相关的初始化代码是通过linux-3.18.6/init/main.c文件中的start_kernel函数里的trap_init()初始化的。执行int $0x80指令后内核开始执行system_call入口处开始的代码,位于entry_32.S汇编文件中。
下面分析system_call汇编代码:

 

1.SAVE ALL                                // 保存调用前寄存器相关的信息

2.call *sys_call_table(,%eax,4)   // 执行系统调用对应的处理函数,eax存放系统调用号

// 通过linux-3.18.6/arch/x86/syscalls/syscall_32.tbl找到系统调用号对应处理函数

3.movl %eax,PT_EAX(%esp)     // 保存系统调用处理函数返回值到exa

4. testl $_TIF_ALLWORK_MASK, %ecx    # current->work
    jne syscall_exit_work  
                                                   // 这两句检查调用退出前是否有其他工作要处理,如有则跳到syscall_exit_work处继续处理,以下是syscall_exit_work相关代码:
syscall_exit_work:
    testl $_TIF_WORK_SYSCALL_EXIT, %ecx    // 测试是否退出前还有工作要处理,如有则跳到work_pending
    jz work_pending           
    TRACE_IRQS_ON
    ENABLE_INTERRUPTS(CLBR_ANY)    # could let syscall_trace_leave() call
                    # schedule() instead
    movl %esp, %eax
    call syscall_trace_leave
    jmp resume_userspace
END(syscall_exit_work)

5.下面是work_pending的相关代码,在注释中解释相关内容
work_pending:
    testb $_TIF_NEED_RESCHED, %cl       // 是否有要继续调度的相关信号
    jz work_notifysig      #跳转到处理信号相关的代码处
work_resched:
    call schedule                                         // 时间调度,进程调度的时机在这里处理
    LOCKDEP_SYS_EXIT
    DISABLE_INTERRUPTS(CLBR_ANY)    # make sure we don‘t miss an interrupt
                    # setting need_resched or sigpending
                    # between sampling and the iret
    TRACE_IRQS_OFF
    movl TI_flags(%ebp), %ecx
    andl $_TIF_WORK_MASK, %ecx    # is there any work to be done other  // 是否有其他工作要处理
                                                          # than syscall tracing?
    jz restore_all                // 如果没有则恢复中断上下文,即恢复进入之前保存的寄存器内容
    testb $_TIF_NEED_RESCHED, %cl
    jnz work_resched

work_notifysig:                # deal with pending signals and    // 处理相关信号代码
                                      # notify-resume requests
#ifdef CONFIG_VM86
    testl $X86_EFLAGS_VM, PT_EFLAGS(%esp)
    movl %esp, %eax
    jne work_notifysig_v86        # returning to kernel-space or
                                              # vm86-space
1:
#else
    movl %esp, %eax
#endif
    TRACE_IRQS_ON
    ENABLE_INTERRUPTS(CLBR_NONE)
    movb PT_CS(%esp), %bl
    andb $SEGMENT_RPL_MASK, %bl
    cmpb $USER_RPL, %bl
    jb resume_kernel
    xorl %edx, %edx
    call do_notify_resume
    jmp resume_userspace

#ifdef CONFIG_VM86
    ALIGN
work_notifysig_v86:
    pushl_cfi %ecx               # save ti_flags for do_notify_resume
    call save_v86_state        # %eax contains pt_regs pointer
    popl_cfi %ecx
    movl %eax, %esp
    jmp 1b
#endif
END(work_pending)

6. restore_all:
       RESTORE_INT_REGS     // 中断返回之前恢复相关寄存器的内容

7.     irq_return:
      INTERRUPT_RETURN     // 这两行代码主要是返回到用户态

总结
1.执行int 0x80指令后系统从用户态进入内核态,跳到system_call()函数处执行相应服务进程。在此过程中内核先保存中断环境,然后执行系统调用函数。
2.system_call()函数通过系统调用号查找系统调用表sys_cal_table来查找具体系统调用服务进程。
3.执行完系统调用后,iret之前,内核会检查是否有新的中断产生、是否需要进程切换、是否学要处理其它进程发送过来的信号等。 
4.内核是处理各种系统调用的中断集合,通过中断机制实现进程上下文的切换,通过系统调用管理整个计算机软硬件资源。
5.如没有新的中断,restore保存的中断环境并返回用户态完成一个系统调用过程。

时间: 2024-11-08 21:59:21

《Linux内核分析》第五周的相关文章

Linux内核及分析 第五周 扒开系统调用的三层皮(下)

实验内容: 1.执行rm menu -rf命令,强制删除原有的menu 2.使用git命令 git clone https://github.com/mengning/menu.git 克隆新的menu 3.在test.c中,在main函数中增加两个MenuConfig 4.增加对应的GetPid函数和GetPidAsm函数 5.通过脚本 make rootfs,编译并运行Menu 6.设置断点使用gdb跟增系统调用内核函数sys_time 系统调用是一种中断: 1. 保存现场 在系统调用时,我

Linux内核及分析 第六周 分析Linux内核创建一个新进程的过程

实验过程 1.github上克隆相应的mengning/menu.git 2.测试menuOS,测试fork直接执行结果 3.配置调试系统,进入gdb调试,利用file linux-3.18.6/vmlinux和target remote:1234来配置加载初始调试环境 4.在linux内核进程创建可能用到的点设置断点分别为sys_clone,do_fork,dup_task_struct,copy_thread,copy_process和ret_from_fork. 总结: 1.通过调用do_

Linux内核及分析 第三周 Linux内核的启动过程

实验过程: 打开shell终端,执行以下命令: cd LinuxKernel/ qemu -kernel linux-3.18.6/arch/x86/boot/bzImage-initrd rootfs.img 执行完毕后会弹出QEMU窗口,输出Linux内核启动信息,启动成功后显示Menuos 输入help,提示该精简的系统支持三个命令:help.version.quit 使用gdb跟踪调试内核 打开shell终端,执行以下命令: cd LinuxKernel/ qemu -kernel li

Linux内核及分析 第八周 进程的切换和系统的一般执行过程

学习笔记: 一.进程调度与进程调度的时机分析 1.不同类型的进程有不同需求的调度需求: 第一种分类: —I/O-bound:频繁的进行I/O,通常会花费很多时间等待I/O操作的完成 —CPU-bound:计算密集型,需要大量的CPU时间进行运算 第二种分类: —批处理进程:不必与用户交互,通常在后台运行:不必响应很快: —实时进程:有实时需求,不被低优先级的进程阻塞:响应时间短,稳定: —交互式进程:需要经常与用户交互:响应时间要快 2.调度策略:一组规则,决定什么时候以怎样的方式选择一个新的进

Linux内核及分析 第七周 可执行程序的装载

实验步骤 1. 更新menu,用test.c覆盖test_exec.c 2. 把init 和 hello 放到了rootfs.img目录下,执行exec命令的时候自动加载了hello程序 3. 执行exec 4. 运行stopped的menu 5.  gdb进行跟踪分析 总结 1. 创建新进程 2. 新进程调用execve()系统调用执行指定的ELF文件 3. 调用内核的入口函数sys_execve(),sys_execve()服务例程修改当前进程的执行上下文: 当ELF被load_elf_bi

Linux内核源代码分析方法

Linux内核源代码分析方法   一.内核源代码之我见 Linux内核代码的庞大令不少人"望而生畏",也正由于如此,使得人们对Linux的了解仅处于泛泛的层次.假设想透析Linux,深入操作系统的本质,阅读内核源代码是最有效的途径.我们都知道,想成为优秀的程序猿,须要大量的实践和代码的编写.编程固然重要,可是往往仅仅编程的人非常easy把自己局限在自己的知识领域内.假设要扩展自己知识的广度,我们须要多接触其它人编写的代码,尤其是水平比我们更高的人编写的代码.通过这样的途径,我们能够跳出

linux 内核源代码分析 - 获取数组的大小

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 測试程序: #include<stdio.h> #include<stdlib.h> struct dev { int a; char b; float c; }; struct dev devs[]= { { 1,'a',7.0, }, { 1,'a',7.0, }, { 1,'a',7.0, }, }; int main() { printf("int is %d \

Linux内核Crash分析

转载自:http://linux.cn/article-3475-1.html 在工作中经常会遇到一些内核crash的情况,本文就是根据内核出现crash后的打印信息,对其进行了分析,使用的内核版本为:Linux2.6.32. 每一个进程的生命周期内,其生命周期的范围为几毫秒到几个月.一般都是和内核有交互,例如用户空间程序使用系统调用进入内核空间.这时使用的不再是用户空 间的栈空间,使用对应的内核栈空间.对每一个进程来说,Linux内核都会把两个不同的数据结构紧凑的存放在一个单独为进程分配的存储

Linux内核分析第五周作业

分析system_call中断处理过程 这次的目标是通过gdb来跟踪上周选择的uname系统调用.因为系统调用是通过中断在内核态实现的,gdb无法调试本机的系统调用.所以必须像之前的内核跟踪那样,用gdb远程连接至qemu虚拟机进行跟踪. 1. 首先修改之前的MenuOS,添加一个myuname函数通过API的方式调用uname系统调用,直接复制了上周的代码,注意要在main函数中把这个函数添加到菜单中 用make命令编译以后,会生成一个test的可执行文件,可以先在本地运行试一试 可以看到命令

内核分析-第五周

刘文学 原创作品转载请注明出处 http://blog.csdn.net/wdxz6547/article/details/50993837<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 预备知识 内核态 用户态 为什么要划分系统级别? 如何区分内核和用户态? cs:eip 寄存器上下文 上下文切换 系统调用号 中断向量 调度时机 系统调用过程中一定发生中断, 在系统调用执行过程中可能有进程的切换. 系统调用分