A - ACfun
Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
Problem Description
As a former ACMer, "AC" is a special abbreviated word which can bring much pleasure to me. Sometimes it means everything.
This problem is about "AC".
One day, I write a long string S on the paper which contains "A" and "C". Now I want to find a lexicographic minimum string T satisfied that T is distinct with all substring of S.
Input
The first line of input file contains an integer T indicating the number of case.
In each test case:
Input a string S consist of "A" and "C". The length of S is not large than 100.
Output
For each test case:
You should output the string T meet the condition.
Sample Input
1 ACAC
Sample Output
AA
字典序:AAAAA<AC
本题:找字典序最小字符串T,其不在S中出现,只包含‘A‘‘C‘
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<functional> #include<iostream> #include<cmath> #include<cctype> #include<ctime> using namespace std; #define For(i,n) for(int i=1;i<=n;i++) #define Fork(i,k,n) for(int i=k;i<=n;i++) #define Rep(i,n) for(int i=0;i<n;i++) #define ForD(i,n) for(int i=n;i;i--) #define RepD(i,n) for(int i=n;i>=0;i--) #define Forp(x) for(int p=pre[x];p;p=next[p]) #define Lson (x<<1) #define Rson ((x<<1)+1) #define MEM(a) memset(a,0,sizeof(a)); #define MEMI(a) memset(a,127,sizeof(a)); #define MEMi(a) memset(a,128,sizeof(a)); #define INF (2139062143) #define F (100000007) #define MAXN (100000+100) long long mul(long long a,long long b){return (a*b)%F;} long long add(long long a,long long b){return (a+b)%F;} long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;} typedef long long ll; char s[MAXN]; int main() { // freopen("A.in","r",stdin); // freopen(".out","w",stdout); int t; scanf("%d\n",&t); while (t--) { scanf("%s",s); int n=strlen(s),p=0,t=0; Rep(i,n) { if (s[i]=='A') p++;else p=0; t=max(t,p); }++t; while(t--) printf("A");printf("\n"); // else printf("%s\n",s); } return 0; }
ACdream 1125(ACfun-字典序)
时间: 2024-11-05 00:38:09