第十五章 动态规划——矩阵链乘法

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题。首先回顾一下矩阵乘法运算法,并给出C++语言实现过程。然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程。

1、矩阵乘法

 

  

  

  从定义可以看出:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C。在计算机中,一个矩阵说穿了就是一个二维数组。一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的r个数与后一个矩阵第j列上的r个数对应相乘后所有r个乘积的和。采用C++语言实现完整的两个矩阵乘法,程序如下所示:

#include<iostream>
#include<cstdlib>
using namespace std;

#define A_ROWS        3
#define A_COLUMNS     2
#define B_ROWS        2
#define B_COLUMNS     3

void matrix_multiply(int A[A_ROWS][A_COLUMNS],int B[B_ROWS][B_COLUMNS],int C[A_ROWS][B_COLUMNS])
{
    if(A_COLUMNS!=B_ROWS)
    {
        cout<<"incompatible dimensions"<<endl;
        exit(1);
    }
    int i,j,k;
    for(i=0;i<A_ROWS;i++)
        for(j=0;j<B_COLUMNS;j++)
    {
        C[i][j]=0;
        for(k=0;k<A_COLUMNS;k++)
            C[i][j]+=A[i][k]*B[k][j];
    }
}

int main()
{
    int C[A_ROWS][B_COLUMNS];
    int A[A_ROWS][A_COLUMNS]={{1,2},{3,4},{5,6}};
    int B[B_ROWS][B_COLUMNS]={1,2,3,4,5,6};
    matrix_multiply(A,B,C);
    int i,j;
    for(i=0;i<A_ROWS;i++)
    {
        for(j=0;j<B_COLUMNS;j++)
            cout<<C[i][j]<<" ";
        cout<<endl;
    }
}

2、矩阵链乘问题描述

  给定n个矩阵构成的一个链<A1,A2,A3,.......An>,其中i=1,2,...n,矩阵A的维数为pi-1pi,对乘积 A1A2...A以一种最小化标量乘法次数的方式进行加全部括号。

  注意:在矩阵链乘问题中,实际上并没有把矩阵相乘,目的是确定一个具有最小代价的矩阵相乘顺序。找出这样一个结合顺序使得相乘的代价最低。

3、动态规划分析过程

1)最优加全部括号的结构

  动态规划第一步是寻找一个最优的子结构。假设现在要计算AiAi+1....Aj的值,计算Ai...j过程当中肯定会存在某个k值(i<=k<j)将Ai...j分成两部分,使得Ai...j的计算量最小。分成两个子问题Ai...k和Ak+1...j,需要继续递归寻找这两个子问题的最优解。

  有分析可以到最优子结构为:假设AiAi+1....Aj的一个最优加全括号把乘积在Ak和Ak+1之间分开,则Ai..k和Ak+1..j也都是最优加全括号的。

2)一个递归解

  设m[i,j]为计算机矩阵Ai...j所需的标量乘法运算次数的最小值,对此计算A1..n的最小代价就是m[1,n]。现在需要来递归定义m[i,j],分两种情况进行讨论如下:

当i==j时:m[i,j] = 0,(此时只包含一个矩阵)

当i<j 时:从步骤1中需要寻找一个k(i≤k<j)值,使得m[i,j] =min{m[i,k]+m[k+1,j]+pi-1pkpj} (i≤k<j)。

3)计算最优代价

  虽然给出了递归解的过程,但是在实现的时候不采用递归实现,而是借助辅助空间,使用自底向上的表格进行实现。设矩阵Ai的维数为pi-1pi,i=1,2.....n。输入序列为:p=<p0,p1,...pn>,length[p] = n+1。使用m[n][n]保存m[i,j]的代价,s[n][n]保存计算m[i,j]时取得最优代价处k的值,最后可以用s中的记录构造一个最优解。书中给出了计算过程的伪代码,摘录如下:

MAXTRIX_CHAIN_ORDER(p)
  n = length[p]-1;
  for i=1 to n
      do m[i][i] = 0;
  for t = 2 to n  //t is the chain length
       do for i=1 to n-t+1
                     j=i+t-1;
                     m[i][j] = MAXLIMIT;
                     for k=i to j-1
                            q = m[i][k] + m[k+1][i] + qi-1qkqj;
                            if q < m[i][j]
                               then m[i][j] = q;
                                    s[i][j] = k;
  return m and s;

C++代码:

#include<iostream>
using namespace std;
#define N 6
#define MAXVALUE 100000000
void matrix_chain_order(int *p,int m[N+1][N+1],int s[N+1][N+1])
{
    int i,j,l,k;
    for(i=1;i<=N;i++)
        m[i][i]=0;
    for(l=2;l<=N;l++)
    {
        for(i=1;i<=N-l+1;i++)
        {
            j=i+l-1;
            m[i][j]=MAXVALUE;
            for(k=i;k<=j-1;k++)
            {
                int temp=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(temp<m[i][j])
                {
                    m[i][j]=temp;
                    s[i][j]=k;
                }
            }
        }
    }
}

void print_optimal_parens(int s[N+1][N+1],int i,int j)
{
    if(i==j)
        cout<<"A"<<i;
    else
    {
        cout<<"(";
        print_optimal_parens(s,i,s[i][j]);
        print_optimal_parens(s,s[i][j]+1,j);
        cout<<")";
    }
}

int main()
{
    int p[N+1] = {30,35,15,5,10,20,25};
    int m[N+1][N+1]={0};
    int s[N+1][N+1]={0};
    int i,j;
    matrix_chain_order(p,m,s);
    cout<<"m value is: "<<endl;
    for(i=1;i<=N;++i)
    {
        for(j=1;j<=N;++j)
            cout<<m[i][j]<<" ";
        cout<<endl;
    }
    cout<<"s value is: "<<endl;
    for(i=1;i<=N;++i)
    {
        for(j=1;j<=N;++j)
            cout<<s[i][j]<<" ";
        cout<<endl;
    }
    cout<<"The result is:"<<endl;
    print_optimal_parens(s,1,N);
    return 0;
}

时间: 2024-08-14 16:37:19

第十五章 动态规划——矩阵链乘法的相关文章

算法导论第十五章动态规划

概述: 1.动态规划是通过组合子问题的解而解决原问题的. 2.动态规划适用于子问题不是独立的情况,也就是各子问题的包含公共的子子问题. 3.动态规划对每个子问题只求解一次,将其结果保存在一张表中. 4.动态规划的设计步骤:a.描述最优解的结构b.递归定义最优解的值c.按自底向上的方式计算最优觖的值d.由计算出的结构构造一个最优解 15.1钢条切割 钢条切割问题:给定定长的钢条和价格表,求切割方案,使得收益最大.如果n英寸的钢条的价格足够大,则不需要切割. 代码如下: //朴素递归求解钢条切割收益

动态规划-矩阵链乘法

问题描述: 给定由n个要相乘的矩阵构成的序列(链)<A1,A2,...,An>,要计算乘积A1A2...An,可以将两个矩阵相乘的标准算法作为一个子程序,通过加括号确定计算的顺序(对同一矩阵链,不同的计算顺序所需要的计算次数大不相同). 目标问题:给定n个矩阵构成的矩阵链<A1,A2,...,An>,其中,i=1,2,...,n,矩阵Ai的维数为pi-1×pi,对乘积A1A2...An以一种最小计算次数加全部括号. 穷尽搜索: 令P(n)表示一串n个矩阵可能的加全部方案数.当n=1

[动态规划] 矩阵链乘法问题

什么是矩阵链乘法(Matrix Chain Multiplication) 矩阵链乘法问题是指给定一串矩阵序列M?M2..Mn,求至少需要进行多少次乘法运算才能求得结果 比如对于这个M?M?M?的矩阵链, 我们可以先计算M?M?然后结果乘以M?,也可以M?M?先算,然后乘以M?,为了表达方便,可以用括号表示计算顺序. 矩阵链M?M?M?有两种计算顺序:((M?M?)M?)和(M?(M?M?)). 那么不同计算顺序有什么区别? 对于((M?M?)M?): 对于(M?(M?M?)):  我们要做的就

《算法导论》读书笔记之动态规划—矩阵链乘法

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题.首先回顾一下矩阵乘法运算法,并给出C++语言实现过程.然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程. 1.矩阵乘法 从定义可以看出:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C.在计算机中,一个矩阵说穿了就是一个二维数组.一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个

动态规划—矩阵链乘法

矩阵链乘问题描述 给定n个矩阵构成的一个链<A1,A2,A3,.......An>,其中i=1,2,...n,矩阵A的维数为pi-1pi,对乘积 A1A2...An 以一种最小化标量乘法次数的方式进行加全部括号. 注意:在矩阵链乘问题中,实际上并没有把矩阵相乘,目的是确定一个具有最小代价的矩阵相乘顺序.找出这样一个结合顺序使得相乘的代价最低. 动态规划分析过程 1)最优加全部括号的结构 动态规划第一步是寻找一个最优的子结构.假设现在要计算AiAi+1....Aj的值,计算Ai...j过程当中肯

第十五章 动态规划——钢条切割

前言:动态规划的概念 动态规划(dynamic programming)是通过组合子问题的解而解决整个问题的.分治算法是指将问题划分为一些独立的子问题,递归的求解各个问题,然后合并子问题的解而得到原问题的解.例如归并排序,快速排序都是采用分治算法思想.本书在第二章介绍归并排序时,详细介绍了分治算法的操作步骤,详细的内容请参考:http://www.cnblogs.com/Anker/archive/2013/01/22/2871042.html.而动态规划与此不同,适用于子问题不是独立的情况,也

第十五章 动态规划——最长公共子序列

1.基本概念 一个给定序列的子序列就是该给定序列中去掉零个或者多个元素的序列.形式化来讲就是:给定一个序列X={x1,x2,……,xm},另外一个序列Z={z1.z2.……,zk},如果存在X的一个严格递增小标序列<i1,i2……,ik>,使得对所有j=1,2,……k,有xij = zj,则Z是X的子序列.例如:Z={B,C,D,B}是X={A,B,C,B,D,A,B}的一个子序列,相应的小标为<2,3,5,7>.从定义可以看出子序列直接的元素不一定是相邻的. 公共子序列:给定两个

算法导论笔记——第十五章 动态规划

通常用来解决最优化问题.在做出每个选择的同时,通常会生成与原问题形式相同的子问题.当多于一个选择子集都生成相同的子问题时,动态规划技术通常就会非常有效.其关键技术就是对每个这样的子问题都保存其解,当其重复出现时即可避免重复求解. 分治:划分为互不相交的子问题,递归求解子问题,再将他们的解组合起来. 动态规划(dynamic programming,表格法而非编程)用于子问题重叠的情况. 四个步骤来设计一个动态规划算法: 1 刻画一个最优解的结构特征 2 递归地定义最优解的值 3 计算最优解的值,

C++实现算法导论十五章动态规划之钢条分割问题

#include<iostream> #include<algorithm> #include<utility> #include<vector> using namespace std; //采用普通的递归算法来求解钢条分割的最大的收益 int cut_rod(int *p,const int &n) { if(n==0) return 0; int q=-1; for(int i=1;i<=n;++i) { q=max(q,p[i]+cut