[bzoj1010][HNOI2008]玩具装箱

Description

个物品,每个物品长度为,现在要把这个物品划分成若干组,每组中的物品编号是连续的,规定每组的长度,费用为,求最小费用.

Input

第一行输入两个整数,接下来行输入.

Output

一行表示最小费用.

Sample Input

5 4

3

4

2

1

4

Sample Output

1

HINT

Solution

表示将前个物品分组所需最小费用.

,考虑斜率优化.

时,

尽量将分离,设,得

的前提是

整理得

(若存在,因为单调递增,所以一定比优,即可以删去)

所以每次取元素时,将满足出队(因为优),然后取队首为.

#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 50001
using namespace std;
typedef long long ll;
ll f[N],s[N],q[N],h,t,l,n;
inline ll sqr(ll k){
    return k*k;
}
inline ll x(ll k){
    return k+s[k];
}
inline ll y(ll k){
    return f[k]+sqr(x(k));
}
inline double cmp(ll p,ll q){
    return (double)(y(q)-y(p))/(double)(x(q)-x(p));
}
inline ll g(ll k){
    return k+s[k]-l;
}
inline void init(){
    scanf("%lld%lld",&n,&l);
    for(ll i=1;i<=n;i++){
        scanf("%lld",&s[i]);
        s[i]+=s[i-1];
    }
    for(ll i=1,k;i<=n;i++){
        k=g(i)<<1;
        while(h<t&&cmp(q[h],q[h+1])<k) h++;
        f[i]=f[q[h]]+sqr(x(q[h])-g(i)+1);
        while(h<t&&cmp(q[t],i)<cmp(q[t-1],q[t]))
            t--;
        q[++t]=i;
    }
    printf("%lld\n",f[n]);
}
int main(){
    freopen("toy.in","r",stdin);
    freopen("toy.out","w",stdout);
    init();
    fclose(stdin);
    fclose(stdout);
    return 0;
}
时间: 2024-10-14 00:35:30

[bzoj1010][HNOI2008]玩具装箱的相关文章

[BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<

BZOJ1010: [HNOI2008]玩具装箱toy

[传送门:BZOJ1010] 简要题意: 给出n条连续线段,每条线段都有长度为x[i],我们可以把连续若干条线段连在一起,变成一个组合,两条线段如果相连,就要在两条线段中间添加一个长度为1的格子(如果没有相连就不用添加),假如我们现在选择把第i条到第j条线段之间的所有线段变成一组合的话,这个组合的总长度就为:x[i]+x[i+1]+x[i+2]+x[i+3]+...+x[j]+j-i,现在给出一个常数L,假设当前选择的组合的长度为s,那么这个组合就为我们产生了(s-L)^2的费用,求出把n条线段

【斜率优化】BZOJ1010 [HNOI2008]玩具装箱toy

[题目大意] P教授有编号为1...N的N件玩具,第i件玩具长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.如果将第i件玩具到第j个玩具放到一 个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关, 如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量.求最小费用. [思路] 懒得说了,把WC宋新波老师的课件搬运一下. 宋新波老师讲的很好,WC的时候第一次听斜率优化听他讲完秒懂了,时隔几个月再来消化一下.

bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i-j-1+sum[i]-sum[j]-L)^2); 于是设g[i]=i+sum[i] g[j]=j+sum[j] c=1+L 则f[i]=min(f[j]+(g[i]-g[j]-c)^2) 证明决策单调性,假设 j 比 k 优 f[j]+(g[i]-g[j]-c)^2<f[k]+(g[i]-g[k]-c)^2 证明f[j]+(g[x]-g[j]-c)^2<f[k]+(g[x]-g[k]-c)^

BZOJ1010:[HNOI2008] 玩具装箱toy(斜率优化)

题意 求将一个长为\(n\)的序列(每个数为\(c_i\))分为很多段,每段(\(i\)~\(j\))的花费是\((j-i+\sum_{k=i}^{j}c_k-L)^2\),求最小的花费.(\(n<=50000\)) 题解 容易看出\(dp\)式子如下 \(dp[i]=min\{dp[j]+(sum[i]-sum[j]+i-(j+1)-L)^2\} \quad (j < i)\) 这个式子为\(O(n^2)\)的复杂度,显然过不去,我们进行一下斜率优化就能优化一维枚举决策点的复杂度,变成\(O

HNOI2008 玩具装箱toy (BZOJ1010,斜率dp)

传送门 1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MB Description P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的. 同时如果一个一维容器中有多个玩具,那么两件玩

BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P

BZOJ 1010 [HNOI2008]玩具装箱toy

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P

BZOJ 1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

[HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为