数据可视化 -- Python

前提条件:

熟悉认知新的编程工具(jupyter notebook)

1、安装:采用pip的方式来安装Jupyter。输入安装命令pip install jupyter即可;

2、启动:安装完成后,我们可在如下目录找到jupyter-notebook这个应用;双击启动

如下图所示:

3、打开浏览器编译器

至此编程工具准备完毕。

数据可视化实战教程:

import pymongo
import charts
client = pymongo.MongoClient(‘localhost‘,27017)
ceshi = client[‘ceshi‘]
item_info = ceshi[‘item_info‘]
for i in item_info.find().limit(300):
    if i[‘area‘] == [‘‘]:
        pass
    else:
        print(i[‘area‘])
area_list = []
for i in item_info.find().limit(300):
    if i[‘area‘] == [‘‘]:
        pass
    else:
        area_list.append(i[‘area‘][1])
area_index = list(set(area_list))
print(area_index)
post_times = []
for index in area_index:
    post_times.append(area_list.count(index))
print(post_times)    
data_gen(‘column‘)
def data_gen(types):
    length = 0
    if length <= len(area_index):
        for area,times in zip(area_index,post_times):
            data = {
                ‘name‘:area,
                ‘data‘:[times],
                ‘type‘:types
            }
            yield data
            length += 1    
for i in data_gen(‘column‘):
    print(i)
series = [data for data in data_gen(‘column‘)]
charts.plot(series,show=‘inline‘,options=dict(title=dict(text=‘杭州发帖数据统计-旺旺‘)))

最终运行结果:

总结知识点:

1、charts模块的引入及使用;

2、列表中append()函数使用;

3、count()函数使用;

4、集合函数set()的使用;

5、列表解析式的使用;

6、zip()函数的使用;

7、yield生成器的使用;

8、MongoDb数据库操作使用;

时间: 2024-12-26 06:42:40

数据可视化 -- Python的相关文章

地铁译:Spark for python developers ---Spark处理后的数据可视化

spark for python developer 一书,说实在的,质量一般,但勉强可以作为python 工程师的入门资料,至此,这一时段的地铁译结束了,开始新的阅读旅程-- 对于 Python 的图形绘制和可视化, 有大量的工具和库,和我们最相关并且有趣的是:? ? Matplotlib 是Python 绘图库的鼻祖. Matplotlib 最初7由 John Hunter 创作, 他是开源软件的支持者,建立的 Matplotlib 是学术界和数据科学界最流行的绘图库之一. Matplotl

Python文件夹下图像数据可视化

Python文件夹下图像数据可视化 import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np   import urllib2 import urllib import os import shutil   subdir= "/7" homedir = os.getcwd() + subdir # "/home/haoyou/Dev/last_caffe_with_s

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据 ??matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. ??它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. ??在Linux下比较著名的数据图工具还有gnuplot

在Python中实现交互式数据可视化

最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力.在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”. ◆ ◆ ◆ 什么是Bokeh? Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库.这是Bokeh与其它可视化库最核心的区别.正如下

Python进阶(四十)-数据可视化の使用matplotlib进行绘图

Python进阶(四十)-数据可视化の使用matplotlib进行绘图 前言 ??matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.我将在这篇文章中介绍matplotlib API的核心对象,并介绍如何使用这些对象来实现绘图.实际上,matplotlib的对象体系严谨而有趣,为使用者提供了巨大的发挥空间.用户在熟悉了核心对象之后,可以轻易的定制图像.matplotlib的对象体系也是计算机图形学的一个优秀范例.即使你不是Python程序员,你也可以从文中

Caffe学习系列(13):数据可视化环境(python接口)配置

caffe程序是由c++语言写的,本身是不带数据可视化功能的.只能借助其它的库或接口,如opencv, python或matlab.大部分人使用python接口来进行可视化,因为python出了个比较强大的东西:ipython notebook, 现在的最新版本改名叫jupyter notebook,它能将python代码搬到浏览器上去执行,以富文本方式显示,使得整个工作可以以笔记的形式展现.存储,对于交互编程.学习非常方便. 一.安装python和pip 一般linux系统都自带python,

Python数据可视化——散点图

PS: 翻了翻草稿箱, 发现居然存了一篇去年2月的文章...虽然naive,还是发出来吧... 本文记录了python中的数据可视化--散点图scatter, 令x作为数据(50个点,每个30维),我们仅可视化前两维.labels为其类别(假设有三类). 这里的x就用random来了,具体数据具体分析. label设定为[1:20]->1, [21:35]->2, [36:50]->3,(python中数组连接方法:先强制转为list,用+,再转回array) 用matplotlib的s

Python数据可视化编程实战——导入数据

1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. 1 #!/usr/bin/env python 2 3 import csv 4 5 filename = 'ch02-data.csv' 6 7 data = [] 8 try: 9 with open(filename) as f: 10 reader = csv

Python数据分析、数据采集、数据可视化、图像数据处理分析视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv