【POJ】3678 Katu Puzzle

http://poj.org/problem?id=3678

题意:很幼稚的题目直接看英文题面= =

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
const int N=1000*2+10, M=N*N*4;
struct E { int next, to; }e[M];
int ihead[N], cnt, tot, num, vis[N], FF[N], LL[N], p[N], n, m, top, s[N];
void add(int u, int v) { e[++cnt]=(E){ihead[u], v}; ihead[u]=cnt; }
void tarjan(int x) {
	FF[x]=LL[x]=++tot; vis[x]=1; s[++top]=x;
	for(int i=ihead[x]; i; i=e[i].next) {
		if(!FF[e[i].to]) tarjan(e[i].to), LL[x]=min(LL[x], LL[e[i].to]);
		else if(vis[e[i].to]) LL[x]=min(LL[x], FF[e[i].to]);
	}
	if(FF[x]==LL[x]) {
		int y;
		++num;
		do {
			y=s[top--];
			vis[y]=0;
			p[y]=num;
		} while(x!=y);
	}
}
void clr() {
	cnt=tot=num=top=0;
	int nn=n<<1;
	memset(ihead, 0, sizeof(int)*(nn));
	memset(p, 0, sizeof(int)*(nn));
	memset(FF, 0, sizeof(int)*(nn));
}
bool check() {
	int nn=n<<1, flag=1;
	for(int i=0; i<nn; ++i) if(!FF[i]) tarjan(i);
	for(int i=0; i<nn; i+=2) if(p[i]==p[i|1]) { flag=0; break; }
	clr();
	return flag;
}
int main() {
	while(~scanf("%d%d", &n, &m)) {
		for(int i=0; i<m; ++i) {
			int a, b, c; static char s[5];
			scanf("%d%d%d%s", &a, &b, &c, s);
			a<<=1; b<<=1;
			if(s[0]==‘A‘) {
				if(c) add(a^1, a), add(b^1, b);
				else add(a, b^1), add(b, a^1);
			}
			else if(s[0]==‘O‘) {
				if(c) add(a^1, b), add(b^1, a);
				else add(a, a^1), add(b, b^1);
			}
			else {
				if(c) add(a^1, b), add(b^1, a), add(a, b^1), add(b, a^1);
				else add(a, b), add(a^1, b^1), add(b, a), add(b^1, a^1);
			}
		}
		check()?puts("YES"):puts("NO");
	}
	return 0;
}

  

随便搞搞就行啦= =

时间: 2024-12-05 08:02:07

【POJ】3678 Katu Puzzle的相关文章

[2-SAT] poj 3678 Katu Puzzle

题目链接: http://poj.org/problem?id=3678 Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7888   Accepted: 2888 Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator 

【POJ】2278 DNA Sequence

各种wa后,各种TLE.注意若AC非法,则ACT等一定非法.而且尽量少MOD. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <queue> 5 using namespace std; 6 7 #define MAXN 105 8 #define NXTN 4 9 10 char str[15]; 11 12 typedef struct Matrix {

【POJ】1739 Tony&#39;s Tour

http://poj.org/problem?id=1739 题意:n×m的棋盘,'#'是障碍,'.'是空白,求左下角走到右下角且走过所有空白格子的方案数.(n,m<=8) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; #define BIT(a,b) ((a)<<((b)<<1)) #

【POJ】2449 Remmarguts&#39; Date(k短路)

http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k 首先我们建反向边,跑一次从汇到源的最短路,将跑出来的最短路作为估价函数h 根据f=g+h 我们将源s先走,此时实际价值g为0,估价为最短路(他们的和就是s-t的最短路) 将所有s所连的边都做相同的处理,加入到堆中(假设此时到达的点为x,那么x的g等于s到这个点的边权,因为根据最优,g+h此时是从x

【POJ】2318 TOYS ——计算几何+二分

TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a problem - their child John never puts his toys away w

【POJ】3009 Curling 2.0 ——DFS

Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11432   Accepted: 4831 Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is

【POJ】1056 IMMEDIATE DECODABILITY

字典树水题. 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 5 typedef struct Trie { 6 bool v; 7 Trie *next[2]; 8 } Trie; 9 10 Trie *root; 11 12 bool create(char str[]) { 13 int i = 0, id; 14 bool ret = false; 15 Trie *p = root

【POJ】2418 Hardwood Species

简单字典树. 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 5 #define MAXN 128 6 7 typedef struct Trie { 8 int count; 9 Trie *next[MAXN]; 10 Trie() { 11 count = 0; 12 for (int i=0; i<MAXN; ++i) 13 next[i] = NULL; 14 } 15 }

【POJ】2513 Colored Sticks

字典树+并查集. 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 5 #define MAXN 500005 6 #define MAXL 11 7 #define TRIEN 26 8 9 typedef struct Trie { 10 int v; 11 Trie *next[TRIEN]; 12 Trie() { 13 v = 0; 14 for (int i=0; i<TRI