2—线性、逻辑回归

线性回归

线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。

在这个等式中:

  • Y:因变量
  • a:斜率
  • x:自变量
  • b :截距

系数 a 和 b 可以通过最小二乘法获得。

参见下例。我们找出最佳拟合直线 y=0.2811x+13.9。已知人的身高,我们可以通过这条等式求出体重。

线性回归的两种主要类型是一元线性回归和多元线性回归。一元线性回归的特点是只有一个自变量。多元线性回归的特点正如其名,存在多个自变量。找最佳拟合直线的时候,你可以拟合到多项或者曲线回归。这些就被叫做多项或曲线回归。

#Import Library
#Import other necessary libraries like pandas, numpy...
from sklearn import linear_model

#Load Train and Test datasets
#Identify feature and response variable(s) and values must be numeric and numpy arrays
x_train=input_variables_values_training_datasets
y_train=target_variables_values_training_datasets
x_test=input_variables_values_test_datasets

# Create linear regression object
linear = linear_model.LinearRegression()

# Train the model using the training sets and check score
linear.fit(x_train, y_train)
linear.score(x_train, y_train)

#Equation coefficient and Intercept
print(‘Coefficient: n‘, linear.coef_)
print(‘Intercept: n‘, linear.intercept_)

#Predict Output
predicted= linear.predict(x_test)

逻辑回归

该算法可根据已知的一系列因变量估计离散数值(比方说二进制数值 0 或 1 ,是或否,真或假)。简单来说,它通过将数据拟合进一个逻辑函数来预估一个事件出现的概率。因此,它也被叫做逻辑回归。因为它预估的是概率,所以它的输出值大小在 0 和 1 之间(正如所预计的一样)。

从数学上看,在结果中,几率的对数使用的是预测变量的线性组合模型。

odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk

在上面的式子里,p 是我们感兴趣的特征出现的概率。它选用使观察样本值的可能性最大化的值作为参数,而不是通过计算误差平方和的最小值(就如一般的回归分析用到的一样)。

#Import Library
from sklearn.linear_model import LogisticRegression
#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create logistic regression object
model = LogisticRegression()

# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)

#Equation coefficient and Intercept
print(‘Coefficient: n‘, model.coef_)
print(‘Intercept: n‘, model.intercept_)

#Predict Output
predicted= model.predict(x_test)

改进点:

  • 加入交互项
  • 精简模型特性
  • 使用正则化方法
  • 使用非线性模型

原文地址:https://www.cnblogs.com/luban/p/9081367.html

时间: 2024-10-12 21:19:33

2—线性、逻辑回归的相关文章

Lineage逻辑回归分类算法

Lineage逻辑回归分类算法 1.概述 Lineage逻辑回归是一种简单而又效果不错的分类算法 什么是回归:比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非线性),就是回归.我们通过大量的数据找出这条线,并拟合出这条线的表达式,再有新数据,我们就以这条线为区分来实现分类. 下图是一个数据集的两组数据,中间有一条区分两组数据的线. 显然,只有这种线性可分的数据分布才适合用线性逻辑回归  2.算法思想 Lineage回归

关于逻辑回归是否线性?sigmoid

from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线性回归模型,因为除去sigmoid映射函数关系,其他的步骤,算法都是线性回归的.可以说,逻辑回归,都是以线性回归为理论支持的.这里讲到的线性,是说模型关于系数一定是线性形式的加入sigmoid映射后,变成: 如果分类平面本身就是线性的,那么逻辑回归关于特征变量x,以及关于系数都是线性的如果分类平面是

机器学习—逻辑回归理论简介

下面是转载的内容,主要是介绍逻辑回归的理论知识,先总结一下自己看完的心得 简单来说线性回归就是直接将特征值和其对应的概率进行相乘得到一个结果,逻辑回归则是这样的结果上加上一个逻辑函数 这里选用的就是Sigmoid函数,在坐标尺度很大的情况下类似于阶跃函数 在确认特征对应的权重值也就是回归系数的时候 最常用的方法是最大似然法,EM参数估计,这个是在一阶导数能够有解的前提下 如果一阶导数无法求得解析值,那么一般选取梯度上升法,通过有限次的迭代过程,结合代价函数更新回归系数至收敛 //////////

逻辑回归算法

使用线性模型进行回归学习,但若要做分类任务该怎么办呢?答案蕴含在广义线性模型中:只需要找一个单调可微的函数将分类任务的真实标记y与线性回归模型的预测值联系起来. 对数几率函数是一个常用的替代函数: 该函数的图像如下图(来源:维基百科): 对数几率函数又称作"sigmoid函数",将z值转化为一个接近0或1的y值. 二.逻辑会回参数求解过程 三.Logistic Regression的适用性 1) 可用于概率预测,也可用于分类. 并不是所有的机器学习方法都可以做可能性概率预测(比如SVM

机器学习-逻辑回归

(整理的简单,公式也没使用公式编辑器.) 对于数据集D={(x1,y1),(x2,y2),...,{xn,yn}} ,而xi= {xi1,xi2,...,xim} 代表m维 . 在线性回归中,我们想学习一个线性的函数 f(x) = w1*x1+w2*x2+w3*x3+...+wm*xm+b . 向量形式 f(X) = Wt*X +b  其中Wt 是W 向量的转置.其可能值范围是(-oo,+oo). 对于二分类任务,其类别标记为y={0,1},  需要将范围取到(0,1),就使用sigmoid函数

机器学习之逻辑回归

2. 逻辑回归 简述 Logistic回归算法基于Sigmoid函数,或者说Sigmoid就是逻辑回归函数.Sigmoid函数定义如下: 11+e?z.函数值域范围(0,1). 因此逻辑回归函数的表达式如下: hθ(x)=g(θTX)=11+e?θTX其中,g(z)=11+e?z 其导数形式为: g′(z)=ddz11+e?z=1(1+e?z)2(e?z)=11+e?z(1?11+e?z)=g(z)(1?g(z)) 代价函数 逻辑回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:

Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

逻辑回归 & 递归下降算法

0)递归下降算法的目的是通过不断迭代,逼近函数的最小值,从而求出参数 1)逻辑回归实际上是一个分类器, 利用已有的样本来训练 sigmoid 函数 (1) sigmoid 函数的一般形式: (2) sigmoid 函数的图形: (3) 预测函数 : 比如说有一个样本x, 他有10个 features : ,根据可以得到他们的预测函数的值:    那么就可以知道样本X 的归属 :  是一类, 否则是另一类. 注意:这里假设线性边界情况 : 即形如 , 而不会是  这种.而且推导也是基于这个假设的.