霍夫线变换,霍夫圆变换

在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在。在许多应用场合中需要快速准确地检测出直线或者圆。其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。最基本的霍夫变换是从黑白图像中检测直线(线段)。

1、霍夫变换

⑴霍夫变换概述

霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。

霍夫变换于1962年由PaulHough首次提出,最初的Hough变换是设计用来检测直线和曲线,起初的方法要求知道物体边界线的解析方程,但不需要有关区域位置的先验知识。这种方法的一个突出优点是分割结果的Robustness,即对数据的不完全或噪声不是非常敏感。然而,要获得描述边界的解析表达常常是不可能的。后于1972年由Richard Duda & Peter Hart推广使用,经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。霍夫变换运用两个坐标空间之间的变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点上形成峰值,从而把检测任意形状的问题转化为统计峰值问题。

⑵霍夫线变换

我们知道,霍夫线变换是一种用来寻找直线的方法. 在使用霍夫线变换之前, 首先要对图像进行边缘检测的处理,也即霍夫线变换的直接输入只能是边缘二值图像.

OpenCV支持三种不同的霍夫线变换,它们分别是:

  ●标准霍夫变换(Standard Hough Transform,SHT)

  ●多尺度霍夫变换(Multi-Scale Hough Transform,MSHT)

  ●累计概率霍夫变换(Progressive Probabilistic Hough Transform ,PPHT)。

其中,多尺度霍夫变换(MSHT)为经典霍夫变换(SHT)在多尺度下的一个变种。累计概率霍夫变换(PPHT)算法是标准霍夫变换(SHT)算法的一个改进,它在一定的范围内进行霍夫变换,计算单独线段的方向以及范围,从而减少计算量,缩短计算时间。之所以称PPHT为“概率”的,是因为并不将累加器平面内的所有可能的点累加,而只是累加其中的一部分,该想法是如果峰值如果足够高,只用一小部分时间去寻找它就够了。这样猜想的话,可以实质性地减少计算时间。

在OpenCV中,我们可以用HoughLines函数来调用标准霍夫变换SHT和多尺度霍夫变换MSHT。

而HoughLinesP函数用于调用累计概率霍夫变换PPHT。累计概率霍夫变换执行效率很高,所有相比于HoughLines函数,我们更倾向于使用HoughLinesP函数。

总结一下,OpenCV中的霍夫线变换有如下三种:

  <1>标准霍夫变换(StandardHough Transform,SHT),由HoughLines函数调用。

  <2>多尺度霍夫变换(Multi-ScaleHough Transform,MSHT),由HoughLines函数调用。

  <3>累计概率霍夫变换(ProgressiveProbabilistic Hough Transform,PPHT),由HoughLinesP函数调用。

⑶霍夫线变换的原理

【1】众所周知, 一条直线在图像二维空间可由两个变量表示. 如:

<1>在笛卡尔坐标系: 可由参数: 斜率和截距(m,b) 表示。

<2>在极坐标系: 可由参数: 极径和极角

对于霍夫变换, 我们将采用第二种方式极坐标系来表示直线. 因此, 直线的表达式可为:

化简便可得到:

【2】一般来说对于点, 我们可以将通过这个点的一族直线统一定义为:

这就意味着每一对代表一条通过点的直线。

【3】如果对于一个给定点我们在极坐标对极径极角平面绘出所有通过它的直线, 将得到一条正弦曲线. 例如, 对于给定点X_0= 8 和Y_0= 6 我们可以绘出下图 (在平面):

这三条曲线在平面相交于点 (0.925, 9.6), 坐标表示的是参数对或者是说点, 点和点组成的平面内的的直线。

【5】以上的说明表明,一般来说, 一条直线能够通过在平面寻找交于一点的曲线数量来检测。而越多曲线交于一点也就意味着这个交点表示的直线由更多的点组成. 一般来说我们可以通过设置直线上点的阈值来定义多少条曲线交于一点我们才认为检测到了一条直线。

【6】这就是霍夫线变换要做的. 它追踪图像中每个点对应曲线间的交点. 如果交于一点的曲线的数量超过了阈值, 那么可以认为这个交点所代表的参数对在原图像中为一条直线。

 2、霍夫圆变换

霍夫圆变换的基本原理和上面讲的霍夫线变化大体上是很类似的,只是点对应的二维极径极角空间被三维的圆心点x, y还有半径r空间取代。说“大体上类似”的原因是,如果完全用相同的方法的话,累加平面会被三维的累加容器所代替:在这三维中,一维是x,一维是y,另外一维是圆的半径r。这就意味着需要大量的内存而且执行效率会很低,速度会很慢。

对直线来说, 一条直线能由参数极径极角表示. 而对圆来说, 我们需要三个参数来表示一个圆, 也就是:

这里的 表示圆心的位置 (下图中的绿点) 而 r 表示半径, 这样我们就能唯一的定义一个圆了, 见下图:

在OpenCV中,我们一般通过一个叫做“霍夫梯度法”的方法来解决圆变换的问题。

 ⑴霍夫梯度法的原理

【1】首先对图像应用边缘检测,比如用canny边缘检测。

【2】然后,对边缘图像中的每一个非零点,考虑其局部梯度,即用Sobel()函数计算x和y方向的Sobel一阶导数得到梯度。

【3】利用得到的梯度,由斜率指定的直线上的每一个点都在累加器中被累加,这里的斜率是从一个指定的最小值到指定的最大值的距离。

【4】同时,标记边缘图像中每一个非0像素的位置。

【5】然后从二维累加器中这些点中选择候选的中心,这些中心都大于给定阈值并且大于其所有近邻。这些候选的中心按照累加值降序排列,以便于最支持像素的中心首先出现。

【6】接下来对每一个中心,考虑所有的非0像素。

【7】这些像素按照其与中心的距离排序。从到最大半径的最小距离算起,选择非0像素最支持的一条半径。8.如果一个中心收到边缘图像非0像素最充分的支持,并且到前期被选择的中心有足够的距离,那么它就会被保留下来。

这个实现可以使算法执行起来更高效,或许更加重要的是,能够帮助解决三维累加器中会产生许多噪声并且使得结果不稳定的稀疏分布问题。

人无完人,金无足赤。同样,这个算法也并不是十全十美的,还有许多需要指出的缺点。

原文地址:https://www.cnblogs.com/zhuifeng-mayi/p/9569391.html

时间: 2024-11-05 21:48:28

霍夫线变换,霍夫圆变换的相关文章

学习 opencv---(13)opencv霍夫变换:霍夫线变换,霍夫圆变换

在本篇文章中,我们将一起学习opencv中霍夫变换相关的知识点,以及了解opencv中实现霍夫变换的HoughLines,HoughLinesP函数的使用方法,实现霍夫圆变换的HoughCircles函数的使用方法. 先尝鲜一下其中一个示例程序的运行截图: 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确的检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像识别几何形状的基

20、【opencv入门】霍夫变换:霍夫线变换,霍夫圆变换合辑

一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.最基本的霍夫变换是从黑白图像中检测直线(线段). 二.霍夫变换概述 霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状

python数字图像处理(15):霍夫线变换

在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

opencv —— HoughLines、HoughLinesP 霍夫线变换(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)

霍夫线变换的原理 一条直线在图像二维空间可由两个变量表示,有以下两种情况: ① 在笛卡尔坐标系中:可由参数斜率和截距(k,b)表示. ② 在极坐标系中:可由参数极经和极角(r,θ)表示. 对于霍夫线变换,我们将采用第二种方式极坐标系来表示直线,因此直线的表达式可为: 化简便可得到: 对于(x0,y0),我们可以将通过这一点的所有直线统一定义为: 这就意味着每一对  代表一条通过点  的直线. 对于一个给定点   ,我们可以在直角坐标系中,绘出所有通过它的直线(θ 为 x 轴,r 为 y 轴).最

opencv-霍夫直线变换与圆变换

转自:https://blog.csdn.net/poem_qianmo/article/details/26977557 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.最基本的霍夫变换是从黑白图像中检测直线(线段).这篇文章就将介绍OpenCV中霍夫变换的使

【练习6.8】霍夫直线变换、圆变换,cvCanny边缘检测,找圆找直线

提纲 题目要求 程序代码 结果图片 要言妙道 题目要求: 使用霍夫直线变换和霍夫圆变换 a.找圆 b.找直线 程序代码: 1 // OpenCVExerciseTesting.cpp : 定义控制台应用程序的入口点. 2 // 3 //D:\\Work\\Work_Programming\\Source\\Image\\lena.jpg 4 5 6 #include "stdafx.h" 7 #include <cv.h> 8 #include <highgui.h&

opencv之霍夫曼变换

霍夫变换不仅可以找出图片中的直线,也可以找出圆,椭圆,三角形等等,只要你能定义出直线方程,圆形的方程等等. 不得不说,现在网上的各种博客质量真的不行,网上一堆文章,乱TM瞎写,误人子弟.本身自己就没有理解的很清楚,又不去读算法实现的源码,写的云山雾罩的,越看越懵逼. 霍夫变换本身的思路是很简明的.这篇文章我们就以霍夫直线变换说明算法的思想. 霍夫变换 思考一下,二维平面里我们怎么表达直线. 有两种表达方式: 直角坐标系(也叫笛卡尔坐标系) 极坐标系(也叫球坐标系) 第一种就是最常见的直角坐标系下

opencv 检测图像线条 霍夫线检测

1 # Writer : [email protected] 2 3 # Data : 2020.3.21 4 5 import cv2 as cv 6 7 import numpy as np 8 9 img = cv.imread('../paojie.jpg') 10 11 gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) 12 13 # 50,150 为二值化时的阈值 apertureSize为Sobel滤波器的大小 14 15 edges = cv.C

哈夫曼树+哈夫曼编码

前天acm实验课,老师教了几种排序,抓的一套题上有一个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这里我就结合课本,写一篇关于哈夫曼树的博客. 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答. (01) 路径和路径长度 定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之