HDU 1028 Ignatius and the Princess III(生成函数)

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24796    Accepted Submission(s):
17138

Problem Description

"Well, it seems the first problem is too easy. I will
let you know how foolish you are later." feng5166 says.

"The second
problem is, given an positive integer N, we define an equation like
this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My
question is how many different equations you can find for a given N.
For
example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 +
2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is
4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you
do it!"

Input

The input contains several test cases. Each test case
contains a positive integer N(1<=N<=120) which is mentioned above. The
input is terminated by the end of file.

Output

For each test case, you have to output a line contains
an integer P which indicate the different equations you have found.

Sample Input

4
10
20

Sample Output

5
42
627

Author

Ignatius.L

Recommend

We have carefully selected several similar problems for
you:  1171 1085 1398 2152 1709

生成函数的裸题

对于每个数构造一个多项式$ax^i$表示权值为$i$的方案数为$a$

初始时$a$为1

然后全乘起来就行

#include<cstdio>
#include<cstring>
#include<algorithm>
const int MAXN = 121;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < ‘0‘ || c > ‘9‘) {if(c == ‘-‘) f = -1; c = getchar();}
    while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = getchar();
    return x * f;
}
int cur[MAXN], nxt[MAXN];
main() {
    int N;
    while(scanf("%d", &N) != EOF) {
        memset(cur, 0, sizeof(cur));
        for(int i = 0; i <= N; i++) cur[i] = 1;
        for(int i = 2; i <= N; i++) {
            for(int j = 0; j <= N; j++)
                for(int k = 0; j + i * k <= N; k++)
                    nxt[j + k * i] += cur[j];
            memcpy(cur, nxt, sizeof(nxt));
            memset(nxt, 0, sizeof(nxt));
        }
        printf("%d\n", cur[N]);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/zwfymqz/p/9154805.html

时间: 2024-10-31 07:06:54

HDU 1028 Ignatius and the Princess III(生成函数)的相关文章

hdu 1028 Ignatius and the Princess III(母函数,完全背包)

http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分问题. 第一道母函数...母函数入门 小于等于n的整数共有n个,1,2......n,每个数都有无限多个,对于整数1,它所对应的母函数为(1+x+x^2+...+x^k+...),整数2对应的母函数为(1+x^2+X^4+...+x^(2*k)+...),整数3对应的母函数为(1+x^3+x^6+...+x^(3*k)+...),以此类推,直到整数n. 那么n的整数划分的个数就是这n个母函数乘积

hdu 1028 Ignatius and the Princess III 简单dp

题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是dp[i][i].那么dp[i][j]=dp[i][j-1]+dp[i-j][i-j],dp[i][j-1]是累加1到j-1的结果,dp[i-j][i-j]表示的就是最大为j,然后i-j有多少种表达方式啦.因为i-j可能大于j,这与我们定义的j为最大值矛盾,所以要去掉大于j的那些值 /*******

hdu 1028 Ignatius and the Princess III(整数划分)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 12731    Accepted Submission(s): 8999 Problem Description "Well, it seems the first problem is too easy. I will let

hdu 1028 Ignatius and the Princess III 【整数划分】

Ignatius and the Princess III                                                                                       Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 15730    Accepted Submission(

HDU 1028 Ignatius and the Princess III dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 一道经典题,也是算法设计与分析上的一道题,可以用递推,动态规划,母函数求解,我用的是动态规划,也就是递推的变形. dp[i][j]表示数i的划分中最大数不超过j的划分的个数 状态转移方程: if(j > i) dp[i][j] = dp[i][i]; if(j == i) dp[i][j] = dp[i][j - 1] + 1; if(j < i) dp[i][j] = dp[i][j -

HDU 1028 Ignatius and the Princess III(母函数)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15794    Accepted Submission(s): 11138 Description "Well, it seems the first problem is too easy. I will let you kno

HDU 1028.Ignatius and the Princess III【分析】【8月20】

Ignatius and the Princess III Problem Description "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like

(简单母函数模板)hdu 1028 Ignatius and the Princess III

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14405    Accepted Submission(s): 10142 Problem Description "Well, it seems the first problem is too easy. I will le

HDU 1028 Ignatius and the Princess III (动态规划)

题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2