评估指标

1.准确率(查准率)

  准确率P=查找到的正确数据条数/查找到的总数据条数

2.召回率(查全率)

  召回率R=查找到的正确数据条数/总共的正确数据条数

3.F-Measure

  当α为1时,即为F1值

  F1值是P和R的综合,F1值较高时,模型效果较好

4.example

  100条鱼,100只虾,小明现在要徒手摸鱼。

  小明的大手一次摸到了85个东西,66条鱼和19只虾。

  则准确率=66/85

   召回率=66/100

  所以召回率高的情况下,准确率也高,效果就很好了。

时间: 2024-11-14 09:20:20

评估指标的相关文章

机器学习算法分类及其评估指标

机器学习的入门,我们需要的一些基本概念: 机器学习的定义 M.Mitchell<机器学习>中的定义是: 对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习. 算法分类 两张图片很好的总结了(机器学习)的算法分类: 评估指标 分类(Classification)算法指标: Accuracy准确率 Precision精确率 Recall召回率 F1 score 对于分类问题的结果可以用下表表示(说明:True或者False

评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间内返回较全面和准确的信息,所以信息检索的评价指标通常从三个方面考虑:效率.效果和其他如数据规模. 下面简单介绍几种常用的信息检索评价指标: 1.准确率与召回率(Precision & Recall)        精度和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精

【深度学习】常用的模型评估指标

"没有测量,就没有科学."这是科学家门捷列夫的名言.在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要.只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化.本文将总结机器学习最常见的模型评估指标,其中包括: precision recall F1-score PRC ROC和AUC IOU 从混淆矩阵谈起 看一看下面这个例子:假定瓜农拉来一车西瓜,我们用训练好的模型对这些西瓜进行判别,显然我们可以使用错误率

中小企业对流程管理的评估指标和评估方法

实施流程管理的企业都很想知道效果如何,虽然凭感觉也能说出一个大概,但要准确评价,还得有量化指标才行.本文就此提出个人看法.对单个流程的评估可以随时随地进行,对企业流程管理进行整体评价,则必须在企业实施流程管理一个阶段之后才能进行.通常需要在项目完成一年后进行,否则,时间太短.没有数据支撑,则无法判断.那么,我们从评估指标和评估方法两个方面进行阐述.一.评估指标(1)流程意识普及程度:(2)流程图覆盖范围:(3)流程责任界定清晰度:(4)流程责任考核覆盖面:(5)违背流程事件发生量:(6)违背流程

评估指标:ROC,AUC,Precision、Recall、F1-score

一.ROC,AUC ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣 . ROC曲线一般的横轴是FPR,纵轴是FPR.AUC为曲线下面的面积,作为评估指标,AUC值越大,说明模型越好.如下图: 二.Precision.Recall.F1-score Terminology and derivationsfrom a confusion matrix true positive (TP)

001 分类模型评估指标(二)

二分类问题 多分类问题 连续变量问题 二.简单二分类问题的延伸 如果只是简单的二分类问题,只需要一个二分类的混淆矩阵即可对模型进行评估.但如果问题发生如下变化: 情况1:基于同一组数据集多次训练/测试不同的模型 情况2:基于多个数据集测试评估同一个模型 情况3:执行多分类任务 此时,会产生多个不同的混淆矩阵,则需要引入两个新的概念"宏"与"微". (1)"宏": 当产生n个混淆矩阵时,分别计算每个混淆矩阵的Precision,recall,F-m

【机器学习】性能评估指标

机器学习性能评估指标 TP.TN.FP.FN FN:False(假的) Negative(反例),模型判断样本为负例,但模型判断错了,事实上是正样本.(漏报率)FP:False(假的) Positive(正例),模型判断样本为正例,但模型判断错了,事实上是负样本.(误报率)TN:True(真的) Negative(负例),模型判断样本为负例,事实上也是负样本,模型的判断是对的.TP:True(真的) Positive(正例),模型判断样本为正例,事实上也是正样本,模型判断是对的. Precisi

Spark ML机器学习库评估指标示例

本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估

机器学习基础 | 分类模型评估指标

目录 成对指标 综合指标 图形指标 在处理机器学习的分类问题中,我们需要评估分类结果的好坏以选择或者优化模型,本文总结二分类任务中常用的评估指标.对于多分类任务的评估指标,可以参考这篇文章 先从我们最熟知的混淆矩阵(confusion matrix)说起. source 鉴于混淆矩阵看着比较抽象,可以参考下图 常用的评估指标可以分为3类: 成对指标,包括正确率(精度)&错误率,Precision&Reall,TPR(Sentitivity)&TNR(Specificity)等; 综

【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图: 相关公式: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来是负例,但预测出来是正列) 值越大越好 2.ROC曲线 过程:对第一个样例,预测对,阈值是0.9,所以曲线向上走,以此类推. 对第三个样例,预测错,阈