一文弄懂计数排序算法!

这是小川的第385次更新,第413篇原创

01 计数排序算法概念

计数排序不是一个比较排序算法,该算法于1954年由 Harold H. Seward提出,通过计数将时间复杂度降到了O(N)

02 基础版算法步骤

第一步:找出原数组中元素值最大的,记为max

第二步:创建一个新数组count,其长度是max加1,其元素默认值都为0。

第三步:遍历原数组中的元素,以原数组中的元素作为count数组的索引,以原数组中的元素出现次数作为count数组的元素值。

第四步:创建结果数组result,起始索引index

第五步:遍历count数组,找出其中元素值大于0的元素,将其对应的索引作为元素值填充到result数组中去,每处理一次,count中的该元素值减1,直到该元素值不大于0,依次处理count中剩下的元素。

第六步:返回结果数组result

03 基础版代码实现

public int[] countSort(int[] A) {
    // 找出数组A中的最大值
    int max = Integer.MIN_VALUE;
    for (int num : A) {
        max = Math.max(max, num);
    }
    // 初始化计数数组count
    int[] count = new int[max+1];
    // 对计数数组各元素赋值
    for (int num : A) {
        count[num]++;
    }
    // 创建结果数组
    int[] result = new int[A.length];
    // 创建结果数组的起始索引
    int index = 0;
    // 遍历计数数组,将计数数组的索引填充到结果数组中
    for (int i=0; i<count.length; i++) {
        while (count[i]>0) {
            result[index++] = i;
            count[i]--;
        }
    }
    // 返回结果数组
    return result;
}

04 优化版

基础版能够解决一般的情况,但是它有一个缺陷,那就是存在空间浪费的问题。

比如一组数据{101,109,108,102,110,107,103},其中最大值为110,按照基础版的思路,我们需要创建一个长度为111的计数数组,但是我们可以发现,它前面的[0,100]的空间完全浪费了,那怎样优化呢?

将数组长度定为max-min+1,即不仅要找出最大值,还要找出最小值,根据两者的差来确定计数数组的长度

public int[] countSort2(int[] A) {
    // 找出数组A中的最大值、最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for (int num : A) {
        max = Math.max(max, num);
        min = Math.min(min, num);
    }
    // 初始化计数数组count
    // 长度为最大值减最小值加1
    int[] count = new int[max-min+1];
    // 对计数数组各元素赋值
    for (int num : A) {
        // A中的元素要减去最小值,再作为新索引
        count[num-min]++;
    }
    // 创建结果数组
    int[] result = new int[A.length];
    // 创建结果数组的起始索引
    int index = 0;
    // 遍历计数数组,将计数数组的索引填充到结果数组中
    for (int i=0; i<count.length; i++) {
        while (count[i]>0) {
            // 再将减去的最小值补上
            result[index++] = i+min;
            count[i]--;
        }
    }
    // 返回结果数组
    return result;
}

05 进阶版步骤

以数组A = {101,109,107,103,108,102,103,110,107,103}为例。

第一步:找出数组中的最大值max、最小值min

第二步:创建一个新数组count,其长度是max-min加1,其元素默认值都为0。

第三步:遍历原数组中的元素,以原数组中的元素作为count数组的索引,以原数组中的元素出现次数作为count数组的元素值。

第四步:对count数组变形新元素的值是前面元素累加之和的值,即count[i+1] = count[i+1] + count[i];

第五步:创建结果数组result,长度和原始数组一样。

第六步:遍历原始数组中的元素,当前元素A[j]减去最小值min,作为索引,在计数数组中找到对应的元素值count[A[j]-min],再将count[A[j]-min]的值减去1,就是A[j]在结果数组result中的位置,做完上述这些操作,count[A[j]-min]自减1。

是不是对第四步和第六步有疑问?为什么要这样操作?

第四步操作,是让计数数组count存储的元素值,等于原始数组中相应整数的最终排序位置,即计算原始数组中的每个数字在结果数组中处于的位置

比如索引值为9的count[9],它的元素值为10,而索引9对应的原始数组A中的元素为9+101=110(要补上最小值min,才能还原),即110在排序后的位置是第10位,即result[9] = 110,排完后count[9]的值需要减1,count[9]变为9。

再比如索引值为6的count[6],他的元素值为7,而索引6对应的原始数组A中的元素为6+101=107,即107在排序后的位置是第7位,即result[6] = 107,排完后count[6]的值需要减1,count[6]变为6。

如果索引值继续为6,在经过上一次的排序后,count[6]的值变成了6,即107在排序后的位置是第6位,即result[5] = 107,排完后count[6]的值需要减1,count[6]变为5。

至于第六步操作,就是为了找到A中的当前元素在结果数组result中排第几位,也就达到了排序的目的。

06 进阶版代码实现





public int[] countSort3(int[] A) {
    // 找出数组A中的最大值、最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for (int num : A) {
        max = Math.max(max, num);
        min = Math.min(min, num);
    }
    // 初始化计数数组count
    // 长度为最大值减最小值加1
    int[] count = new int[max-min+1];
    // 对计数数组各元素赋值
    for (int num : A) {
        // A中的元素要减去最小值,再作为新索引
        count[num-min]++;
    }
    // 计数数组变形,新元素的值是前面元素累加之和的值
    for (int i=1; i<count.length; i++) {
        count[i] += count[i-1];
    }
    // 创建结果数组
    int[] result = new int[A.length];
    // 遍历A中的元素,填充到结果数组中去
    for (int j=0; j<A.length; j++) {
        result[count[A[j]-min]-1] = A[j];
        count[A[j]-min]--;
    }
    return result;
}

07 进阶版的延伸之一

如果我们想要原始数组中的相同元素按照本来的顺序的排列,那该怎么处理呢?

依旧以上一个数组{101,109,107,103,108,102,103,110,107,103}为例,其中有两个107,我们要实现第二个107在排序后依旧排在第一个107的后面,可以在第六步的时候,做下变动就可以实现,用倒序的方式遍历原始数组,即从后往前遍历A数组。

从后往前遍历,第一次遇到107(A[8])时,107-101 = 6,count[6] = 7,即第二个107要排在第7位,即result[6] = 107,排序后count[6] = 6

继续往前,第二次遇到107(A[2])时,107-101 = 6,count[6] = 6,即第一个107要排在第6位,即result[5] = 107,排序后count[6] = 5

public int[] countSort4(int[] A) {
    // 找出数组A中的最大值、最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for (int num : A) {
        max = Math.max(max, num);
        min = Math.min(min, num);
    }
    // 初始化计数数组count
    // 长度为最大值减最小值加1
    int[] count = new int[max-min+1];
    // 对计数数组各元素赋值
    for (int num : A) {
        // A中的元素要减去最小值,再作为新索引
        count[num-min]++;
    }
    // 计数数组变形,新元素的值是前面元素累加之和的值
    for (int i=1; i<count.length; i++) {
        count[i] += count[i-1];
    }
    // 创建结果数组
    int[] result = new int[A.length];
    // 遍历A中的元素,填充到结果数组中去,从后往前遍历
    for (int j=A.length-1; j>=0; j--) {
        result[count[A[j]-min]-1] = A[j];
        count[A[j]-min]--;
    }
    return result;
}

08 进阶版的延伸之二

既然从后往前遍历原始数组的元素可以保证其原始排序,那么从前往后可不可以达到相同的效果?

答案时可以的。

第一步:找出数组中的最大值max、最小值min

第二步:创建一个新数组count,其长度是max-min加1再加1,其元素默认值都为0。

第三步:遍历原数组中的元素,以原数组中的元素作为count数组的索引,以原数组中的元素出现次数作为count数组的元素值。

第四步:对count数组变形,新元素的值是前面元素累加之和的值,即count[i+1] = count[i+1] + count[i];

第五步:创建结果数组result,长度和原始数组一样。

第六步:从前往后遍历原始数组中的元素,当前元素A[j]减去最小值min,作为索引,在计数数组中找到对应的元素值count[A[j]-min],就是A[j]在结果数组result中的位置,做完上述这些操作,count[A[j]-min]自增加1。

依旧以上一个数组{101,109,107,103,108,102,103,110,107,103}为例,其中有两个107,我们要实现第一个107在排序后依旧排在第二个107的前面。

此时计数数组count{0, 1, 2, 5, 5, 5, 5, 7, 8, 9, 10}从前往后遍历原始数组A中的元素。

第一次遇到107(A[2])时,107-101 = 6,count[6] = 5,即第一个107在结果数组中的索引为5,即result[5] = 107,排序后count[6] = 6

第二次遇到107(A[8])时,107-101 = 6,count[6] = 6,即第二个107在结果数组中的索引为6,即result[6] = 107,排序后count[6] = 7

public int[] countSort5(int[] A) {
    // 找出数组A中的最大值、最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for (int num : A) {
        max = Math.max(max, num);
        min = Math.min(min, num);
    }
    // 初始化计数数组count
    // 长度为最大值减最小值加1,再加1
    int[] count = new int[(max-min+1)+1];
    // 对计数数组各元素赋值,count[0]永远为0
    for (int num : A) {
        // A中的元素要减去最小值再加上1,再作为新索引
        count[num-min+1]++;
    }
    // 计数数组变形,新元素的值是前面元素累加之和的值
    for (int i=1; i<count.length; i++) {
        count[i] += count[i-1];
    }
    // 创建结果数组
    int[] result = new int[A.length];
    // 遍历A中的元素,填充到结果数组中去,从前往后遍历
    for (int j=0; j<A.length; j++) {
        // 如果后面遇到相同的元素,在前面元素的基础上往后排
        // 如此就保证了原始数组中相同元素的原始排序
        result[count[A[j]-min]] = A[j];
        count[A[j]-min]++;
    }
    return result;
}

09 小结

以上就是计数排序算法的全部内容了,虽然它可以将排序算法的时间复杂度降低到O(N),但是有两个前提需要满足:一是需要排序的元素必须是整数,二是排序元素的取值要在一定范围内,并且比较集中。只有这两个条件都满足,才能最大程度发挥计数排序的优势。

原文地址:https://www.cnblogs.com/xiaochuan94/p/11198610.html

时间: 2024-09-30 19:58:36

一文弄懂计数排序算法!的相关文章

桶排序,计数排序算法

计数排序: 桶排序:www.roading.org/algorithm/introductiontoalgorithm 算法模型: 1,桶排序假设待排的一组数统一分布在一个范围[m....n],将这一范围划分为几个子范围,也就是桶bucket. 例如,如何将0---999范围的数,划分到10个桶中?范围中数的个数用K表示,那么K/10=1000/10=100,就是每个桶装100个元素,即[0..99]装到第一个桶中,[100..199]装到第二个桶中,...以此类推. 怎么判断一个数组该放到哪个

计数排序算法

计数排序(Counting sort)是一种稳定的线性时间排序算法.计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数.然后根据数组C来将A中的元素排到正确的位置. 本文地址:http://www.cnblogs.com/archimedes/p/counting-sort-algorithm.html,转载请注明源地址. 计数排序的特征 当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k).计数排序不是比较排序,排序的速度快于任何比较

计数排序算法——时间复杂度O(n+k)

计数排序 计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出.它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法. 算法思想 计数排序对输入的数据有附加的限制条件: 1.输入的线性表的元素属于有限偏序集S: 2.设输入的线性表的长度为n,|S|=k(表示集合S中元素的总数目为k),则k=O(n). 在这两个条件下,计数排序的复杂性为O(n). 计数排序的基本思想是对于给定的输入序列中的每一个元

计数排序 - 算法数据结构面试分享(五)

数组排序问题 - 计数排序 昨天我们留了一道题目"给你一个整型数组,里面出现的数在[0-100] 之间,能用最优化的方法帮我排序吗". 1. 确保我们理解了问题,并且尝试一个例子,确认理解无误. 这是一道排序算法题,我们学过很多排序的算法.不一样的是,它给定一个额外的条件,数组里的每个数字都在1-100之间.如果我们采取传统的排序算法,这个条件我们好像用不上.大家在面试的时候如果发现有条件没有用上,基本上我们给出的算法可能不是最优的,或者我们没有解决它最原始的需求.举个例子{50, 4

【TensorFlow】一文弄懂CNN中的padding参数

在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和池化操作,而这两种函数中都存在参数padding,该参数的设置很容易引起错误,所以在此总结下. 1.为什么要使用padding 在弄懂padding规则前得先了解拥有padding参数的函数,在TensorFlow中,主要使用tf.nn.conv2d()进行(二维数据)卷积操作,tf.nn.max_

PHP 计数排序算法

计数排序只适用于整数在小范围内排序 $arr = [95,94,91,98,99,90,99,93,91,92];function countSort($arr){ $max = $arr[0]; $min = $arr[0]; for($i=0;$i<count($arr);$i++){ if($arr[$i]>$max){ $max = $arr[$i]; } if($arr[$i] < $min){ $min = $arr[$i]; } } try{ $frequency = ne

一文弄懂数组的和

方法一:双指针法,先要对数组进行排序 a=[12,6,8,1,4,3] def sum2(a,target): res=[] a=sorted(a) l,r=0,len(a)-1 while l<r: tmp=[0,0] if a[l]+a[r]==target: tmp[0]=a[l] tmp[1]=a[r] res.append(tmp) l+=1 r-=1 elif a[l]+a[r]>target: r-=1 else: l+=1 return res print(sum2(a,9))

机器学习基础——一文讲懂中文分词算法

在前文当中,我们介绍了搜索引擎的大致原理.有错过或者不熟悉的同学,可以点击下方的链接回顾一下前文的内容. ML基础--搜索引擎基本原理 在介绍爬虫部分的时候,我们知道,爬虫在爬取到网页的内容之后,会先进行一些处理.首先要做的就是过滤掉HTML当中的各种标签信息,只保留最原生的网页内容.之后,程序会对这些文本内容提取关键词. 今天我们就来讲讲关键词提取当中最重要的一个部分--中文分词. 在世界上众多的语言当中,中文算是比较特殊的一种.许多语言自带分词信息,比如英文,机器学习写作machine le

一文弄懂神经网络中的反向传播法——BackPropagation

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容