Kafka之Producer

通过https://www.cnblogs.com/tree1123/p/11243668.html 已经对consumer有了一定的了解。producer比consumer要简单一些。

一、旧版本producer

0.9.0.0版本以前,是由scala编写的旧版本producer。

入口类:kafka.producer.Producer

代码示例:

Properties properties = new Properties();
        properties.put("metadata.broker.list", "kafka01:9092,kafka02:9092");
        properties.put("serializer.class", "kafka.serializer.StringEncoder");
        properties.put("request.requird.acks", "1");
        ProducerConfig config = new ProducerConfig(properties);
        Producer<String, String> producer = new Producer<String, String>(config);
        KeyedMessage<String,String> msg = new KeyedMessage<String,String>("topic","hello");
        Producer.send(msg);

旧版本是同步机制,等待响应。吞吐性很差。在0.9.0.0版本以后,正式下架了。

旧版本的方法:

send   发送
close   关闭
sync   异步发送  有丢失消息的可能性

二、新版本producer

旧版本producer由scala编写,0.9.0.0版本以后,新版本producer由java编写。

新版本主要入口类是:org.apache.kafka.clients.producer.KafkaProducer

常用方法:

send  实现消息发送主逻辑
close  关闭producer
metrics  获取producer的实时监控指标数据 比如发送消息的速率

Kafka producer要比consumer设计简单一些,主要就是向某个topic的某个分区发送一条消息。partitioner决定向哪个分区发送消息。用户指定key,默认的分区器会根据key的哈希值来选择分区,如果没有指定key就以轮询的方式选择分区。也可以自定义分区策略。

确定分区后,producer寻找到分区的leader,也就是该leader所在的broker,然后发送消息,leader会进行副本同步ISR。

producer会启两个线程,主线程封装ProducerRecord类,序列化后发给partitioner,然后发送到内存缓冲区。

另一个I/O线程,提取消息分batch统一发送给对应的broker。

示例代码:

Properties properties = new Properties();
        properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
        properties.put("acks", "all");
        properties.put("retries", 0);
        properties.put("batch.size", 16384);
        properties.put("linger.ms", 1);
        properties.put("buffer.memory", 33554432);
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        for (int i = 1; i <= 600; i++) {
            kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i));
            System.out.println("testkafka"+i);
        }
        kafkaProducer.close();

1、构造Properties对象,bootstrap.servers key.serializer value.serializer是必须指定的。

2、使用Properties构造KafkaProducer对象。

3、构造ProducerRecord 指定topic 分区 key value。

4、KafkaProducer的send方法发送。

5、关闭KafkaProducer。

Properties主要参数:

bootstrap.servers 和consumer一样,指定部分broker即可。而且broker端如果没有配ip地址,要写成主机名。

key.serializer value.serializer 序列化参数 一定要全类名 没有key也必须设置。

acks 三个值

? 0: producer完全不管broker的处理结果 回调也就没有用了 并不能保证消息成功发送 但是这种吞吐量最高

? all或者-1: leader broker会等消息写入 并且ISR都写入后 才会响应,这种只要ISR有副本存活就肯定不会丢失,但吞 吐量最低。

? 1: 默认的值 leader broker自己写入后就响应,不会等待ISR其他的副本写入,只要leader broker存活就不会丢失,即保证了不丢失,也保证了吞吐量。

buffer.memory 缓冲区大小 字节 默认是33554432 就是发送消息的内存缓冲区大小 过小的话会影响吞吐量

compression.type 设置是否压缩消息 默认值是none 压缩后可以降低IO开销提高吞吐,但是会增大CPU开销。

? 支持三种: GZIP Snappy LZ4 性能 LZ4 > Snappy > GZIP

retries 发送消息重试的次数 默认0 不重试 重试可能造成重复发送 可能造成乱序

? retry.backoff.ms 设置重试间隔 默认100毫秒

batch.size 调优重要的参数 batch小 吞吐量也会小 batch大 内存压力会大 默认值是16384 16KB

linger.ms 发送延时 默认是0 0的话不用等batch满就发送 延时的话可以提高吞吐 看具体情况进行调整

max.request.size producer能够发送最大消息的大小 默认1048576字节 如果消息很大 需要修改它

request.timeout.ms 发送请求后broker在规定时间返回 默认30秒 超过就是超时了。

Send方法

fire and forget 就是上边的示例

Properties properties = new Properties();
        properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
        properties.put("acks", "all");
        properties.put("retries", 0);
        properties.put("batch.size", 16384);
        properties.put("linger.ms", 1);
        properties.put("buffer.memory", 33554432);
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        for (int i = 1; i <= 600; i++) {
            kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i));
            System.out.println("testkafka"+i);
        }
        kafkaProducer.close();

异步回调 不阻塞

Properties properties = new Properties();
        properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
        properties.put("acks", "all");
        properties.put("retries", 0);
        properties.put("batch.size", 16384);
        properties.put("linger.ms", 1);
        properties.put("buffer.memory", 33554432);
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        for (int i = 1; i <= 600; i++) {
            kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i),new Callback(){
              public void onCompletion(RecordMetadata metadata, Exception e) {
                         if(e != null) {
                            e.printStackTrace();
                         } else {
                            System.out.println("The offset of the record we just sent is: " +       metadata.offset());
                         }
                     }
            });
            System.out.println("testkafka"+i);
        }
        kafkaProducer.close();

同步发送 无限等待返回

producer.send(record).get()

重试机制

如果需要自定义重试机制,就要在回调里对不同异常区别对待,常见的几种如下:

可重试异常

LeaderNotAvailableException :分区的Leader副本不可用,这可能是换届选举导致的瞬时的异常,重试几次就可以恢复
NotControllerException:Controller主要是用来选择分区副本和每一个分区leader的副本信息,主要负责统一管理分区信息等,也可能是选举所致。

NetWorkerException :瞬时网络故障异常所致。

不可重试异常

SerializationException:序列化失败异常

RecordToolLargeException:消息尺寸过大导致。

示例代码:

 producer.send(myRecord,
                   new Callback() {
                       public void onCompletion(RecordMetadata metadata, Exception e) {
                           if(e ==null){
                               //正常处理逻辑
                               System.out.println("The offset of the record we just sent is: " + metadata.offset()); 

                           }else{

                                 if(e instanceof RetriableException) {
                                    //处理可重试异常
                                    ......
                                 } else {
                                    //处理不可重试异常
                                    ......
                                 }
                           }
                       }
                   });
分区机制

partitioner决定向哪个分区发送消息。用户指定key,默认的分区器会根据key的哈希值来选择分区,如果没有指定key就以轮询的方式选择分区。也可以自定义分区策略。

对于有key的消息,java版本的producer自带的partitioner会根据murmur2算法计算消息key的哈希值。然后对总分区数求模得到消息要被发送到的目标分区号。

自定义分区策略:

创建一个类,实现org.apache.kafka.clients.producer.Partitioner接口

主要分区逻辑在Partitioner.partition中实现:通过topic key value 一同确定分区

在构造KafkaProducer得Properties中设置partitioner.class 为自定义类 注意是全类名

序列化机制

常用的serializer

ByteArraySerializer.class

ByteBufferSerializer.class

BytesSerializer.class

DoubleSerializer.class

IntegerSerializer.class

LongSerializer.class

StringSerializer.class

但是其他一些复杂的就需要自定义序列化:

1、定义数据格式

2、创建自定义序列化类,实现org.apache.kafka.common.serialization.Serializer接口

3、在KafkaProducer的Properties中设置key.serializer value.serializer为自定义类

以上均为单线程的情况,但producer是线程安全的,单线程适合分区较少的情况,分区较多可以多线程但对内存损耗较大。

更多实时计算,Kafka等相关技术博文,欢迎关注实时流式计算

原文地址:https://www.cnblogs.com/tree1123/p/11378046.html

时间: 2024-10-16 08:17:42

Kafka之Producer的相关文章

kafka java producer consumer实践

java提供了方便的API进行kafka消息处理.简单总结一下: 学习参考:http://www.itnose.net/st/6095038.html POM配置(关于LOG4J的配置参看 http://www.cnblogs.com/huayu0815/p/5341712.html) <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka

Kafka学习-Producer和Customer

在上一篇kafka入门的基础之上,本篇主要介绍Kafka的生产者和消费者. Kafka 生产者 kafka Producer发布消息记录到Kakfa集群.生产者是线程安全的,在线程之间共享生产者实例.一个简单的例子,使用producer发送一个有序的key/value(键值对),放到java的main方法里就能直接运行, public class ProducerDemo { private static final String KAFKA_TOPIC="kafka-topic";

Kafka的Producer和Consumer源码学习

先解释下两个概念: high watermark (HW) 它表示已经被commited的最后一个message offset(所谓commited, 应该是ISR中所有replica都已写入),HW以下的消息都已被ISR中各个replica同步,从而保持一致.HW以上的消息可能是脏数据:部分replica写成功,但最终失败了. Kafka Partition:  1> 均衡各个Broker之间的数据和请求压力: 2> 分摊处理不同的消费者进程: 3> 在partition内可以保证局部

Kafka的Producer和Consumer的示例

我使用的kafka版本是:0.7.2 jdk版本是:1.6.0_20 http://kafka.apache.org/07/quickstart.html官方给的示例并不是很完整,以下代码是经过我补充的并且编译后能运行的. 分布式发布订阅消息系统 Kafka 架构设计 http://www.linuxidc.com/Linux/2013-11/92751.htm Apache Kafka 代码实例 http://www.linuxidc.com/Linux/2013-11/92754.htm A

057 Java中kafka的Producer程序实现

1.需要启动的服务 这里启动的端口是9092. bin/kafka-console-consumer.sh --topic beifeng --zookeeper linux-hadoop01.ibeifeng.com:2181/kafka 2.producer的程序 1 package com.jun.it; 2 import kafka.javaapi.producer.Producer; 3 import kafka.producer.KeyedMessage; 4 import kafk

Kafka中Producer端封装自定义消息

我们知道KeywordMessage就是被kafka发送和存储的对象.所以只需要模拟出这个就可以发送自定义消息了. 比如我需要将用户的id,user,age,address和访问ip和访问date记录为一个消息.我就自定义一个消息格式(id-user-age-address-ip-date). 我立马想到自己定义个javaBean.写一个UserInfo类伪代码. class UserInfo(){     id;    user;    age;    address;    ip;    d

详解Kafka生产者Producer配置

基本配置 metadata.broker.list:broker服务器集群列表,格式为 host1:port1, host2:port2 ... producer.type:消息发送类型同步还是异步,默认为同步 compression.codec:消息的压缩格式,默认为none不压缩,也可以为gzip, snappy, lz4 serializer.class:消息加密格式,默认为kafka.serializer.DefaultEncoder compressed.topics:主题的压缩格式,

源码分析Kafka之Producer

Kafka是一款很棒的消息系统,可以看看我之前写的 后端好书阅读与推荐来了解一下它的整体设计.今天我们就来深入了解一下它的实现细节(我fork了一份代码),首先关注Producer这一方. 要使用kafka首先要实例化一个KafkaProducer,需要有brokerIP.序列化器等必要Properties以及acks(0.1.n).compression.retries.batch.size等非必要Properties,通过这个简单的接口可以控制Producer大部分行为,实例化后就可以调用s

kafka producer实例及原理分析

1.前言 首先,描述下应用场景: 假设,公司有一款游戏,需要做行为统计分析,数据的源头来自日志,由于用户行为非常多,导致日志量非常大.将日志数据插入数据库然后再进行分析,已经满足不了.最好的办法是存日志,然后通过对日志的分析,计算出有用的数据.我们采用kafka这种分布式日志系统来实现这一过程. 步骤如下: 搭建KAFKA系统运行环境 如果你还没有搭建起来,可以参考我的博客: http://zhangfengzhe.blog.51cto.com/8855103/1556650 设计数据存储格式