Poj 2391 Ombrophobic Bovines 网络流 拆点

Poj 2391 Ombrophobic Bovines 网络流 拆点

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter. 

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it. 

Output
* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".
Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint
OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units. 

分析:

又是经典的floyd+二分答案 但是这里要注意建图时对每一个草地要进行拆点,即每个点拆成两个点x和x‘,源点向x连边,权值为初始的牛的数量;x‘向汇点连边,权值为可以容纳的牛的数量;x向x‘连边,权值为INF。

然后枚举任意两点i和j,如果i和j之间的最短距离d[i][j]<=mid,则建边i->j‘,权值为INF。

此时计算最大流,就是在限定mid时间内可以移动的最多的牛的数量,如果等于牛的总数则说明可行,否则不可行。继续二分。

代码如下:

#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=500+10;
const int INF1 = 1e9;
const ll INF2 = 1LL<<60;
int f,p,total = 0;
int a[maxn],b[maxn];
ll d[maxn][maxn],l = 0,r,mid;
struct Edge
{
    int from,to,cap,flow;
    Edge(){}
    Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
};
struct Dinic
{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    int d[maxn];
    int cur[maxn];
    bool vis[maxn];

    void init(int n,int s,int t)
    {
        this->n=n, this->s=s, this->t=t;
        edges.clear();
        for(int i=0;i<n;i++) G[i].clear();
    }
    void AddEdge(int from,int to,int cap)
    {
        edges.push_back( Edge(from,to,cap,0) );
        edges.push_back( Edge(to,from,0,0) );
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BFS()
    {
        queue<int> Q;
        memset(vis,0,sizeof(vis));
        vis[s]=true;
        d[s]=0;
        Q.push(s);
        while(!Q.empty())
        {
            int x=Q.front(); Q.pop();
            for(int i=0;i<G[x].size();i++)
            {
                Edge e=edges[G[x][i]];
                if(!vis[e.to] && e.cap>e.flow)
                {
                    vis[e.to]=true;
                    d[e.to] = d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int DFS(int x,int a)
    {
        if(x==t || a==0) return a;
        int flow=0,f;

        for(int& i=cur[x];i<G[x].size();++i)
        {
            Edge& e=edges[G[x][i]];
            if(d[e.to]==d[x]+1 && (f=DFS(e.to, min(a,e.cap-e.flow) ) )>0 )
            {
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0) break;
            }
        }
        return flow;
    }

    int Max_Flow()
    {
        int flow=0;
        while(BFS())
        {
            memset(cur,0,sizeof(cur));
            flow += DFS(s,INF1);
        }
        return flow;
    }
}DC;
void floyd() {
    for(int k = 1;k <= f;k++) {
        for(int i = 1;i <= f;i++) {
            for(int j = 1;j <= f;j++) {
                if(d[i][k] < INF2 && d[k][j] < INF2) {
                    d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
                    r = max(r,d[i][j]);
                }
            }
        }
    }
}
bool solve(ll limit) {
    DC.init(2*f+2,0,2*f+1);
    for(int i = 1;i <= f;i++) {
        DC.AddEdge(0,i,a[i]);
        DC.AddEdge(f+i,2*f+1,b[i]);
    }
    for(int i = 1;i <= f;i++) {
        for(int j = 1;j <= f;j++) {
            if(d[i][j] <= limit) DC.AddEdge(i,j+f,INF1);
        }
    }
    return DC.Max_Flow() == total;
}
int main() {
    scanf("%d%d",&f,&p);
    for(int i = 1;i <= f;i++) {
        scanf("%d%d",&a[i],&b[i]);
        total += a[i];
    }
    for(int i = 1;i <= f;i++) {
        for(int j = 1;j <= f;j++) {
           d[i][j] = (i == j) ? 0 : INF2;
        }
    }
    for(int i = 0;i < p;i++) {
        int u,v;
        ll w;
        scanf("%d%d%I64d",&u,&v,&w);
        d[u][v] = d[v][u] = min(d[u][v],w);
    }
    r = 0;
    floyd();
    if(solve(r) == false) printf("-1\n");
    else {
        while(l < r) {
            mid = l + (r - l) / 2;
            if(solve(mid)) r = mid;
            else l = mid + 1;
        }
            printf("%I64d\n",r);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/pot-a-to/p/10989321.html

时间: 2024-10-03 16:26:57

Poj 2391 Ombrophobic Bovines 网络流 拆点的相关文章

POJ 2391 Ombrophobic Bovines 网络流 建模

[题目大意]给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去.(1 <= N <= 200, 1 <= M <= 1500, 0 <= Ai <= 1000, 0 <= Bi <= 1000, 1 <= Dij <= 1,000,000,000) 一开始想拆点建图,0到x集合为汇,值为各个区域的牛数量, Y到终点连边,值为各个区域的容量,然后就是看怎么连x和y了 我一开始把可

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 15时39分22秒 * File Name: poj2391.cpp */ #include <ctime> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring&g

POJ 2391 Ombrophobic Bovines (二分,最短路径,网络流sap,dinic,预留推进 )

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14019   Accepted: 3068 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

POJ 2391 Ombrophobic Bovines (二分 + floyd + 网络流)

POJ 2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题目:农场有F 块草地,1≤F≤200,奶牛们在草地上吃草.这些草地之间有P 条路相连,1≤P≤1500,这些路足够宽,再多的奶牛也能同时在路上行走.有些草地上有避雨点,奶牛们可以在此避雨.避雨点的容量是有限的,所以一个避雨点不可能容纳下所有的奶牛.草地与路相比很小,奶牛们通过时不需要花费时间.计算警报至少需要提前多少时间拉响,以保证所有的奶牛都能到达一个避雨点. 思路:

POJ 2391 Ombrophobic Bovines(最大流+拆点)

POJ 2391 Ombrophobic Bovines 题目链接 题意:一些牛棚,有a只牛,现在下雨,每个牛棚容量量变成b,现在有一些道路连接了牛棚,问下雨后牛走到其他牛棚,使得所有牛都有地方躲雨,最后一只牛要走多久 思路:二分答案,然后最大流去判断,建图的方式为,牛棚拆点,源点连向入点,容量为a,出点连向汇点容量为b,中间入点和出点之间根据二分的值判断哪些边是可以加入的 代码: #include <cstdio> #include <cstring> #include <

POJ 2391 Ombrophobic Bovines 不喜欢雨的奶牛 Floyd+二分枚举+最大流

题目链接:POJ 2391 Ombrophobic Bovines Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15006   Accepted: 3278 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have de

POJ 2391 Ombrophobic Bovines

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4057 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

poj 2391 Ombrophobic Bovines 二分+最大流

同poj 2112. 代码: //poj 2391 //sep9 #include <iostream> #include <queue> #include <algorithm> using namespace std; typedef long long ll; const int maxN=1024; const int maxM=100002; const ll MAX=(1ULL<<63)-1; struct Edge { int v,f,nxt;