Python 函数式编程--偏函数

1.1   偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。

>>> import functools

>>> int(‘123‘, base = 8)    --转换成8进制

83

>>> int(‘123‘, base = 16)   --转换成16进制

291

functools.partial就是帮助我们创建一个偏函数的。

>>> def int2(x, base = 2):

...    return int(x, base)

...

>>> int2(‘11111111111111‘)

16383

>>> import functools

>>> int2 =functools.partial(int, base = 2)

>>> int2(‘11111111111111‘)

16383

functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数,当传入:

int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

int2(‘10010‘)

相当于:

kw = { ‘base‘: 2 }

int(‘10010‘, **kw)

max2 = functools.partial(max, 10)

实际上会把10作为*args的一部分自动加到左边,也就是:

max2(5, 6, 7)

相当于:

args = (10, 5, 6, 7)

max(*args)

结果为10。

时间: 2024-10-07 05:16:32

Python 函数式编程--偏函数的相关文章

python函数式编程——偏函数

今天讲解的内容是偏函数,偏函数是从Python2.5引入的一个概念,通过functools模块被用户调用. 偏函数是将所要承载的函数作为partial()函数的第一个参数,原函数的各个参数依次作为为partial()函数后续的参数,除非使用关键字参数. 通过语言描述可能无法理解偏函数是怎么使用的,那么就举一个常见的例子来说明.在这个例子里,我们实现了一个取余函数,对于整数100,取得对于不同数m的100%m的余数. >>> from functools import partial &g

深入浅出 Python 函数式编程

1.函数式编程的定义与由来 如果程序中的函数仅接受输入并产生输出,即输出只依赖于输入,数据不可变,避免保存程序状态,那么就称为函数式编程(Functional Programming,简称FP,又称泛函编程). 这种风格也称声明式编程(Declarative Programming),与之相对的是指令式编程(Imperative Programming),后者中的对象会不断修改自身状态.函数式编程强调程序的执行结果比执行过程更重要,倡导利用若干简单的执行单元让计算结果不断渐进,逐层推导复杂的运算

我是如何开始去了解Python函数式编程--Python函数式编程初涉

Python函数式编程 1. 开始我们会了解什么是函数式编程: 函数:function 函数式:functional,一种编程范式 函数式编程特点:把计算视为函数而非指令,贴近计算 纯函数式编程:不需要变量,没有副作用,测试简单,支持高阶函数,代码简洁 Python支持的函数式编程特点: 不是纯函数式编程:允许有变量 支持高阶函数:函数也可以作为变量传入 支持闭包:有了闭包就能返回函数 有限度的支持匿名函数 2. 高阶函数 变量可以指向函数,函数名其实就是指向函数的变量,而高阶函数其实就是可以接

【人生苦短 Python当歌】——Python函数式编程01

对Python有一定了解的人应该知道,Python并不是一门函数式编程语言,而是一门支持多种范式的语言,这也使得在Python中也能实现函数式编程, 对于学习到Python函数式编程的朋友,在这里推荐大家看一本名字叫<Python函数式编程>(Functional Programming in Python)从这本书中你应该能收获不少: 怎么说呢,函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就把复杂的任务分解成简单的任务,这种就称为面向过程的程序设

Python 函数式编程之迭代器、生成器及其应用

python 标准库中提供了 itertools, functools, operator三个库支持函数式编程,对高阶函数的支持,python 提供 decorator 语法糖. 迭代器 (iterator)和生成器(generator)概念是 python 函数式编程的基础,利用迭代器和生成器可以实现函数式编程中经常用到的 map(), filter(), reduce() 等过程以及 itertools, functools 中提供的绝大部分功能. 1.迭代器和生成器基础(next, ite

python函数式编程,列表生成式

1.python 中常见的集中存储数据的结构: 列表 集合 字典 元组 字符串 双队列 堆 其中最常见的就是列表,字典. 2.下面讲一些运用循环获取字典列表的元素 1 >>> dic={'name':'zhangsan','age':24,'city':'jinhua'} 2 >>> for key,value in dic.items(): 3 print(key,value) 4 5 6 name zhangsan 7 age 24 8 city jinhua 循环

Python 函数式编程学习

描述:通过将函数作为参数,使得功能类似的函数实现可以整合到同一个函数. Before 1 def getAdd(lst): 2 result = 0 3 for item in lst: 4 result += item 5 return result 6 7 def getMul(lst): 8 result = 1 9 for item in lst: 10 result *= item 11 return result 12 13 print getAdd([1,2,3,4]) 14 pr

(转)Python函数式编程——map()、reduce()

转自:http://www.jianshu.com/p/7fe3408e6048 1.map(func,seq1[,seq2...]) Python 函数式编程中的map()函数是将func作用于seq中的每一个元素,并用一个列表给出返回值.如果func为None,作用通zip().当seq只有一个时,将func函数作用于这个seq的每一个元素上,得到一个新的seq. 举个例子来说明,(假设我们想要得到一个列表中数字%3的余数,那么可以写成下面的代码): >>> print map(la

Python函数式编程——map()、reduce()

文章来源:http://www.pythoner.com/46.html 提起map和reduce想必大家并不陌生,Google公司2003年提出了一个名为MapReduce的编程模型[1],用于处理大规模海量数据,并在之后广泛的应用于Google的各项应用中,2006年Apache的Hadoop项目[2]正式将MapReduce纳入到项目中. 好吧,闲话少说,今天要介绍的是Python函数式编程中的另外两个内建函数map()和reduce(),而不是Google的MapReduce. 1.ma