以AVL树为例理解二叉树的旋转(Rotate)操作

树旋转是在二叉树中的一种子树调整操作, 每一次旋转并不影响对该二叉树进行中序遍历的结果. 树旋转通常应用于需要调整树的局部平衡性的场合. 树旋转包括两个不同的方式, 分别是左旋转和右旋转. 两种旋转呈镜像, 而且互为逆操作.

 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找、插入和删除操作在平均和最坏情况下时间复杂度都是O(log n)

 

AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的。

 

1. LL型

    平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向右旋转一次即可,如图所示,原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树(图上忘在A于Brh之间标实线)



2. RR型

    平衡二叉树某一节点的右孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。



3. LR型

      平衡二叉树某一节点的左孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。



4. RL型

      平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。

时间: 2024-10-27 02:12:08

以AVL树为例理解二叉树的旋转(Rotate)操作的相关文章

PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

<pre class="code"><span style="font-family: %value; font-size: 14px;">03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each inpu

AVL 树的插入、删除、旋转归纳

参考链接: http://blog.csdn.net/gabriel1026/article/details/6311339 之前简单了解过 AVL 树,知道概念但一直没动手实践过.Now AVL 树是二叉搜索树的一种.二叉搜索树的规则就是:每个节点的 left child 都比自己小,right child 都比自己大.而 AVL 的在此之上又加了一个规则:每个节点的 left 深度与 right 深度只差<=1,这样就能充分利用 二叉树的结构,避免出现一个分支走到黑,导致搜索效率变低.如下图

python常用算法(5)——树,二叉树与AVL树

1,树 树是一种非常重要的非线性数据结构,直观的看,它是数据元素(在树中称为节点)按分支关系组织起来的结构,很像自然界中树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示.树在计算机领域中也得到了广泛应用,如在编译源程序时,可用树表示源程序的语法结构.又如在数据库系统中,树型结构也是信息的重要组织形式之一.一切具有层次关系的问题都可以用树来描述. 树(Tree)是元素的集合.树的定义是递归的,树是一种递归的数据结构.比如:目录结构.树是由n个结点组成的集合:如

红黑树与AVL树

概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树: 对排序二叉树,若按中序遍历就可以得到由小到大的

AVL树插入和删除

一.AVL树简介 AVL树是一种平衡的二叉查找树. 平衡二叉树(AVL 树)是一棵空树,或者是具有下列性质的二叉排序树:    1它的左子树和右子树都是平衡二叉树,    2且左子树和右子树高度之差的绝对值不超过 1. 定义平衡因子(BF)为该结点左子树的高度减去右子树的高度所得的高度差:AVL 树任一结点平衡因子只能取-1,0,1: 二.AVL树插入 插入:先查找被插入元素,如果存在,则不操作:如果不存在,则插入. 插入后就是调整和选择的问题. 我们先看一下我们会面临怎么样的问题: 离插入点最

B树、B+树、红黑树、AVL树

定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶

红黑树和AVL树的比较

1. 红黑树并不追求"完全平衡"--它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以O(log2 n) 的时间复杂度进行搜索.插入.删除操作.此外,由于它的设计,任何不平衡都会在三次旋转之内解决.当然,还有一些更好的,但实现起来更复杂的数据结构,能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较"便宜"的解决方案.红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高. 当然,红黑树并不适应所有应用树的领域.如果数据基本上是

AVL树 &amp; 重平衡概念

AVL树是有平衡条件的二叉搜索树.这个平衡条件必须容易保持,而且需要保证树的深度是O(logN). AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树.回顾此前的几节,我们首先介绍的是二叉查找树BST.然而我们也能感受到,尽管从同时兼顾高效的静态操作 和动态操作的角度讲,BST相对此前简单的向量和链表已经具有某种优势和潜质,但是毕竟它并不能保证这一点.其原因在于 它的高度,无论是从平均情况 还是最坏情况都不能保证做到足够的低,具体来说也就是做到logN

AVL树平衡旋转详解

AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7..., n.在BST树中,比较理想的状况是每个子树的左子树和右子树的高度相等,此时搜索的时间复杂度是log(N).可是,一旦这棵树演化成了线型树的时候,这个理想的情况就不存在了,此时搜索的时间复杂度是O(N),在数据量很大的情况下,我们并不愿意看到这样的结果. 现在