损失函数和分类器评估方法

介绍:以下是李航《统计学习方法的》第一章的部分摘录,只为复习总结用

内容:

1.损失函数:

    扩展:线性回归,LR,svm,boosting的损失函数

2.分类器评估方法:

时间: 2024-10-11 08:49:34

损失函数和分类器评估方法的相关文章

目标跟踪文章翻译--基于主动特征选择的鲁棒目标跟踪

摘要:基于检测的自适应跟踪已经被广泛研究了且前景很好.这些追踪器的关键理念是如何训练一个在线有识别力的分类器,这个分类器可以把一个对象从局部背景中分离出来.利用从检测目标位置附近的当前帧中提取的正样本和负样本不断更新分类器.然而,如果检测不准确,样本可能提取的不太准确,从而导致视觉漂移.最近,基于跟踪的多实例学习(MIL)已经在某些程度上提出了一些解决这些问题的办法.它将样本放入正负包中,然后通过最大化似然函数用在线提升的办法选择一些特征.最后,被选择的特征相结合用于分类.然而,在MIL追踪里,

随机森林(原理/样例实现/参数调优)

决策树 1.决策树与随机森林都属于机器学习中监督学习的范畴,主要用于分类问题. 决策树算法有这几种:ID3.C4.5.CART,基于决策树的算法有bagging.随机森林.GBDT等. 决策树是一种利用树形结构进行决策的算法,对于样本数据根据已知条件或叫特征进行分叉,最终建立一棵树,树的叶子结节标识最终决策.新来的数据便可以根据这棵树进行判断.随机森林是一种通过多棵决策树进行优化决策的算法. 2.案例: 图 1 是一棵结构简单的决策树,用于预测贷款用户是否具有偿还贷款的能力.贷款用户主要具备三个

机器学习——决策树算法原理及案例

机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响.决策树是机器学习中最基础且应用最广泛的算法模型.本文介绍了机器学习的相关概念.常见的算法分类和决策树模型及应用.通过一个决策树案例,着重从特征选择.剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则.最后基于 R 语言和 SPSS Modeler这两个工具,分别设计与实现了决策树模型的应用实例. 1.机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论.统计学.

机器学习之决策树算法

机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响.决策树是机器学习中最基础且应用最广泛的算法模型.本文介绍了机器学习的相关概念.常见的算法分类和决策树模型及应用.通过一个决策树案例,着重从特征选择.剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则.最后基于 R 语言和 SPSS 这两个工具,分别设计与实现了决策树模型的应用实例. 机器学习概念  机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.

『cs231n』限制性分类器损失函数和最优化

代码部分 SVM损失函数 & SoftMax损失函数: 注意一下softmax损失的用法: SVM损失函数: import numpy as np def L_i(x, y, W): ''' 非向量化SVM损失计算 :param x: 输入矢量 :param y: 标准分类 :param W: 参数矩阵 :return: ''' delta = 1.0 scores = W.dot(x) correct_score = scores[y] D = W.shap[0] loss_i = 0.0 f

第3课 线性分类器损失函数与最优化

回顾上一节课,我们了解视觉识别,特别是图像分类,这确实是一个非常困难的问题,因为我们必须考虑到这些可能的变化,并使得当我们在识别这些类型时,分类器能够在面对这些变化时具有鲁棒性,例如对猫的识别,似乎存在着难解决的问题,我们仅需要知道如何解决这些问题,同时我们还必须能够在成千上万的其他类型中解决这些问题,而且这种方法能够基本达到甚至是稍微高于人类识别的准确率,这种技术还可能在手机上实时使用,这种技术在近几年开始有重要突破. 这节课时主要讲述了线性分类器的理解方式,包括linearSVM和softm

cs231n笔记:线性分类器

cs231n线性分类器学习笔记,非翻译,根据自己的学习情况总结出的内容: 线性分类 本节介绍线性分类器,该方法可以自然延伸到神经网络和卷积神经网络中,这类方法主要有两部分组成,一个是评分函数(score function):是原始数据和类别分值的映射,另一个是损失函数:它是用来衡量预测标签和真是标签的一致性程度.我们将这类问题转化为优化问题,通过修改参数来最小化损失函数. 首先定义一个评分函数,这个函数将输入样本映射为各个分类类别的得分,得分的高低代表该样本属于该类别可能性的高低.现在假设有一个

adaboost 基于错误提升分类器

引自(机器学习实战) 简单概念 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们需要简单介绍几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%.其实任意的分类器都可以做为弱分类器,比如之前介绍的KNN.决策树.Naïve Bayes.logiostic回归和SVM都可以.这里我们采用的弱分类器是单层决策树,它是一个单节点的决策树.它是adaboost中最流行的弱分类器,当然并非唯一可用的弱分类器.即从特征中选择一个特征来进行分类,该

快速用低度下降法实现一个Logistic Regression 分类器

前阵子听说一个面试题:你实现一个logistic Regression需要多少分钟?搞数据挖掘的人都会觉得实现这个简单的分类器分分钟就搞定了吧? 因为我做数据挖掘的时候,从来都是顺手用用工具的,尤其是微软内部的TLC相当强大,各种机器学习的算法都有,于是自从离开学校后就没有自己实现过这些基础的算法.当有一天心血来潮自己实现一个logistic regression的时候,我会说用了3个小时么?...羞羞 ----------------------------------------------