HDU 6069

Counting Divisors

Problem Description

In mathematics, the function d(n) denotes the number of divisors of positive integer n.

For example, d(12)=6 because 1,2,3,4,6,12 are all 12‘s divisors.

In this problem, given l,r and k, your task is to calculate the following thing :

(∑i=lrd(ik))mod998244353

Input

The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).

Output

For each test case, print a single line containing an integer, denoting the answer.

Sample Input

3
1 5 1
1 10 2
1 100 3

Sample Output

10
48
2302

这题实质上就是分解质因数,不过不能对每个数都分解一次,这样肯定超时。

要用线性的方法求质因数。

设i可以分解为a1,a2,a3,a4……am,则总数加上(a1*k+1)*(a2*k+1)*……(am*k+1)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
#define ll long long
const int mod=998244353;
const int maxn=1000005;
int prime[maxn];
bool vis[maxn];
int top;
ll a[maxn];
ll b[maxn];

void pri()
{
    top=0;
    memset(vis,0,sizeof vis);
    vis[1]=1;
    for(int i=2; i<maxn; i++)
    {
        if(!vis[i])
            prime[top++]=i;
        for(int j=0; j<top&&i*prime[j]<maxn; j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
                break;
        }
    }
}

void fun(ll l,ll r,ll k)
{
    for(ll i=l; i<=r; i++)
        b[i-l]=i;
    for(ll i=l; i<=r; i++)
        a[i-l]=1;
    for(ll i=0; i<top&&prime[i]<=sqrt(r); i++)
    {
        ll x=l/prime[i];
        if(x*prime[i]<l)
            x++;
        for(ll j=x; j*prime[i]<=r; j++)
        {
            ll s=0;
            while(b[prime[i]*j-l]%prime[i]==0)
            {
                s++;
                b[prime[i]*j-l]/=prime[i];
            }
            a[prime[i]*j-l]=a[prime[i]*j-l]*(s*k+1)%mod;
        }
    }
    for(ll i=l; i<=r; i++)
        if(b[i-l]>1)
            a[i-l]=a[i-l]*(k+1)%mod;
}

int main()
{
    pri();
    int T;
    scanf("%d",&T);
    while(T--)
    {
        ll l,r;
        ll k;
        scanf("%lld%lld%lld",&l,&r,&k);
        ll sum=0;
        fun(l,r,k);
        for(ll i=l; i<=r; i++)
            sum=(sum+a[i-l])%mod;
        printf("%lld\n",sum);
    }
    return 0;
}

时间: 2024-10-13 17:59:24

HDU 6069的相关文章

Counting Divisors HDU - 6069

Counting Divisors HDU - 6069 题意:给定区间[a,b]和k,求xk有多少因子(x属于[a,b]),求和. 题解:http://blog.csdn.net/zlh_hhhh/article/details/76680641 a.b最大可达到1e12,但是b-a<1e6. 一开始愚蠢的一个一个分解然后去求有多少因子然后求和,范围那么大裸裸的超时啊! 可以枚举素数,对每一个素数,把区间内所有可以分解的进行分解. 最后再求和. 1 #include <bits/stdc++

第四场 hdu 6069 Counting Divisors (逆向思维)

http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目大意:求 i 从 l 到 r 中 i 的k次方的因子数之和. 解题思路:我们可以知道一个数有因子,则这个数的因子一定是若干个质数因子排列组合得到的.我们首先要得到10^6中的素数,然后它的因子数量是 相同质因子数量+1 的乘积,所以我们能够想到从 l 到 r 枚举每一个i得到其 相同质因子数量+1 的乘积 的累加和.但是这样在枚举时会发现有一些质数是并不是所求的 i 的因子,所以我们应该反过来考虑,

HDU 6069 Counting Divisors(唯一分解定理+因子数)

http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{m}}^{pm}$,那么n的因子数就是 n的k次方也是一样的,也就是p前面乘个k就可以了. 先打个1e6范围的素数表,然后枚举每个素数,在[ l , r ]寻找该素数的倍数,将其分解质因数. 到最后如果一个数没有变成1,那就说明这个数是大于1e6的质数.(它就只有0和1两种选择) 1 #includ

HDU 6069 Counting Divisors(区间素数筛法)

题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K 然后现在就变成了求每个数的每个质因子有多少个,但是比赛的时候只想到sqrt(n)的分解方法,总复杂度爆炸,就一直没过去,然后赛后看官方题解感觉好妙啊! 通过类似素数筛法的方式,把L - R的质因子给分解,就可以在O(nlogn)的时间之内把所以的数给筛出来. 代码: /** @xigua */ #i

HDU 6069 Counting Divisors —— 2017 Multi-University Training 4

Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 2599    Accepted Submission(s): 959 Problem Description In mathematics, the function d(n) denotes the number of divisors of p

hdu 6069 Counting Divisors

题意:给出求L,R 之间的数的K次方的因子数之和 思路:打表求出1~10^6之间的素数,枚举[L,R]之间素数的倍数,然后按算数基本定理求出因子个数和.处理过后[L,R]之间的数要么是1,要么是一个素数,再次根据算数基本定理计算因子个数和. #include<bits/stdc++.h> #define MAXSIZE 1000015 #define INF 0x3f3f3f3f #define LL long long #define MOD 998244353 using namespac

hdu 6069 Counting Divisors(求因子的个数)

Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 3170    Accepted Submission(s): 1184 Problem Description In mathematics, the function d(n) denotes the number of divisors of

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]

题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=6203] 题意 :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点. 题解 :求每个点对的LCA,然后根据LCA的深度排序.从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1. #include<Bits/stdc++.h> using namespace std;

HDU 5542 The Battle of Chibi dp+树状数组

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5542 题意:给你n个数,求其中上升子序列长度为m的个数 可以考虑用dp[i][j]表示以a[i]结尾的长度为j的上升子序列有多少 裸的dp是o(n2m) 所以需要优化 我们可以发现dp的第3维是找比它小的数,那么就可以用树状数组来找 这样就可以降低复杂度 #include<iostream> #include<cstdio> #include<cstring> #include