[zoj3591]Nim 游戏

题意:有n堆火柴,选择连续若干堆火柴进行Nim游戏,求让先手胜的选择方案数。

思路:让先手胜等同于这些数的异或值不同于0,不妨转化为求让先手败的方案数。此时记录一个前缀的异或和val[i],那么答案就是count({i,j})(0<=i<j<n,val[i]=val[j])+count(i)(val[i]=0)。直接map统计可能超时,不妨考虑离线做,把val数组sort一下答案就不难得到了,不要忘记最后用总方案数减一下。

  1 #pragma comment(linker, "/STACK:10240000,10240000")
  2
  3 #include <iostream>
  4 #include <cstdio>
  5 #include <algorithm>
  6 #include <cstdlib>
  7 #include <cstring>
  8 #include <map>
  9 #include <queue>
 10 #include <deque>
 11 #include <cmath>
 12 #include <vector>
 13 #include <ctime>
 14 #include <cctype>
 15 #include <set>
 16 #include <bitset>
 17 #include <functional>
 18 #include <numeric>
 19 #include <stdexcept>
 20 #include <utility>
 21
 22 using namespace std;
 23
 24 #define mem0(a) memset(a, 0, sizeof(a))
 25 #define mem_1(a) memset(a, -1, sizeof(a))
 26 #define lson l, m, rt << 1
 27 #define rson m + 1, r, rt << 1 | 1
 28 #define define_m int m = (l + r) >> 1
 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)
 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)
 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
 32 #define rep_down1(a, b) for (int a = b; a > 0; a--)
 33 #define all(a) (a).begin(), (a).end()
 34 #define lowbit(x) ((x) & (-(x)))
 35 #define constructInt5(name, a, b, c, d, e) name(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0): a(a), b(b), c(c), d(d), e(e) {}
 36 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
 37 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
 38 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
 39 #define pchr(a) putchar(a)
 40 #define pstr(a) printf("%s", a)
 41 #define sstr(a) scanf("%s", a)
 42 #define sint(a) scanf("%d", &a)
 43 #define sint2(a, b) scanf("%d%d", &a, &b)
 44 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
 45 #define pint(a) printf("%d\n", a)
 46 #define test_print1(a) cout << "var1 = " << a << endl
 47 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
 48 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
 49 #define mp(a, b) make_pair(a, b)
 50 #define pb(a) push_back(a)
 51
 52 typedef long long LL;
 53 typedef pair<int, int> pii;
 54 typedef vector<int> vi;
 55
 56 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};
 57 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };
 58 const int maxn = 3e4 + 7;
 59 const int md = 10007;
 60 const int inf = 1e9 + 7;
 61 const LL inf_L = 1e18 + 7;
 62 const double pi = acos(-1.0);
 63 const double eps = 1e-6;
 64
 65 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}
 66 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
 67 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
 68 template<class T>T condition(bool f, T a, T b){return f?a:b;}
 69 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
 70 int make_id(int x, int y, int n) { return x * n + y; }
 71
 72 int g, s, n, w, a[100007], nim[100007];
 73
 74 void init() {
 75     g = s;
 76     rep_up0(i, n) {
 77         a[i] = g;
 78         if (a[i] == 0) {
 79             a[i] = g = w;
 80         }
 81         if (g % 2 == 0) {
 82             g /= 2;
 83         }
 84         else g = (g / 2) ^ w;
 85     }
 86 }
 87
 88 int main() {
 89     //freopen("in.txt", "r", stdin);
 90     int T;
 91     cin >> T;
 92     while (T --) {
 93         cin >> n >> s >> w;
 94         init();
 95         nim[0] = a[0];
 96         rep_up0(i, n - 1) nim[i + 1] = nim[i] ^ a[i + 1];
 97         sort(nim, nim + n);
 98         LL ans = 0;
 99         rep_up0(i, n) {
100             if (nim[i] != 0) break;
101             ans ++;
102         }
103         LL c = 1;
104         nim[n] = -1;
105         rep_up0(i, n) {
106             if (nim[i] != nim[i + 1]) {
107                 ans += c * (c - 1) / 2;
108                 c = 1;
109             }
110             else c ++;
111         }
112         cout << (LL)n * (n + 1) / 2 - ans << endl;
113     }
114     return 0;
115 }

时间: 2024-11-08 14:31:24

[zoj3591]Nim 游戏的相关文章

BZOJ 3105: [cqoi2013]新Nim游戏

3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1064  Solved: 624[Submit][Status][Discuss] Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游

Nim 游戏、SG 函数、游戏的和

Nim游戏 Nim游戏定义 Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于"Impartial Combinatorial Games"(以下简称ICG).满足以下条件的游戏是ICG(可能不太严谨):1.有两名选手:2.两名选手交替对游戏进行移动(move),每次一步,选手可以在(一般而言)有限的合法移动集合中任选一种进行移动:3.对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作.以前的任何操作.骰子的点数

HDU 5465 Clarke and puzzle Nim游戏+二维树状数组

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5465 Clarke and puzzle Accepts: 42 Submissions: 269 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) 问题描述 克拉克是一名人格分裂患者.某一天,有两个克拉克(aa和bb)在玩一个方格游戏. 这个方格是一个n*mn∗m的矩阵,每个格子里有一

HDU_1907_基础博弈nim游戏

John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 4440    Accepted Submission(s): 2541 Problem Description Little John is playing very funny game with his younger brother. There is one big bo

3105: [cqoi2013]新Nim游戏 异或高消 &amp;&amp; 拟阵

3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Status][Discuss] Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏

NIM游戏策略

NIM取子游戏是由两个人面对若干堆硬币(或石子,或..)进行的游戏,游戏由两个人进行,设有k>=1堆硬币,各堆含有n1,n2,n3,n4.....,nk个硬币,游戏的目的就是选取最后剩下的硬币.游戏规则如下: 1)游戏人交替进行游戏: 2)当轮到每个游戏人取子时,选择这些硬币中的一堆,并从所选的堆中取走至少一枚硬币(可以将所选堆中所有硬币全部取走剩下一个空堆). 当所有堆变成空堆时,游戏结束.最后取子的人(即能够取走最后一堆中的所有硬币的人)获胜. 这个问题中的变量是堆数k和各堆的硬币数n1,n

BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即可(保留最多的不为0的堆) [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map&g

【bzoj3150】 cqoi2013—新Nim游戏

www.lydsy.com/JudgeOnline/problem.php?id=3105 (题目链接) 题意:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样.问是否有先手必胜策略. Solution  动态维护线性基.拟阵证明?我也不会,请自行百度. 代码: // bzoj3105 #include<algorithm> #include&l

1069 Nim游戏

1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子. Input 第1行:一个数N,表示有N堆石子.(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量