索贝尔算子(Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量
Sobel卷积因子为:
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:
具体计算如下:
图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:
通常,为了提高效率使用不开平方的近似值:
然后可用以下公式计算梯度方向:
若图像为:
则使用近似公式的计算的结果为:
Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。将Sobel算子矩阵中的所有2改为根号2,就能得到各向同性Sobel的矩阵。
由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,即Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
参考:http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm
http://blog.csdn.net/tianhai110/article/details/5663756
除此之外:由于基础核具有关于0,0,0所在的中轴正负对称,所以通过对基础核的旋转,和图像做卷积,可以获得灰度图的边缘图,同时消去旋转角方向+180°上的边缘,迭代多个方向即可消去多个方向的边缘,但是为消去的边缘会加倍。
基础核:
0°
-1 |
0 |
1 |
-2 |
0 |
2 |
-1 |
0 |
1 |
旋转后的核(顺时针为正)
45°
-2 |
-1 |
0 |
-1 |
0 |
1 |
0 |
1 |
2 |
90°
-1 |
-2 |
-1 |
0 |
0 |
0 |
1 |
2 |
1 |
135°
0 |
-1 |
-2 |
1 |
0 |
-1 |
2 |
1 |
0 |
180°
1 |
0 |
-1 |
2 |
0 |
-2 |
1 |
0 |
-1 |
225°
2 |
1 |
0 |
1 |
0 |
-1 |
0 |
-1 |
-2 |
270°
1 |
2 |
1 |
0 |
0 |
0 |
-1 |
-2 |
-1 |
原图:
结果图如下,按0°,45°,90°,135°,180°,225°,270°排序
代码如下:
#include "cv.h" #include "cxmisc.h" #include "highgui.h" #include <vector> #include <string> #include <algorithm> #include <stdio.h> #include <ctype.h> #pragma comment(lib, "G:\\OpenCV-2.1.0\\vc2008\\lib\\cxcore210d.lib") #pragma comment(lib, "G:\\OpenCV-2.1.0\\vc2008\\lib\\cv210d.lib") #pragma comment(lib, "G:\\OpenCV-2.1.0\\vc2008\\lib\\highgui210d.lib") //对不同深度图片和较大的图片进行放缩,以至于可以在显示器上完全显示 void ShowConvertImage(char name[200],IplImage* Image) { cvNamedWindow(name,1); char savename[350]; sprintf(savename,"%s.jpg",name); cvSaveImage(savename,Image); if(Image->width<1280) { if(Image->depth!=IPL_DEPTH_8U) { IplImage* NormalizeImage=NULL; NormalizeImage=cvCreateImage(cvGetSize(Image),IPL_DEPTH_8U,1); cvConvertScale(Image,NormalizeImage,1,0);//将图转为0-256,用于图片显示, cvShowImage(name,NormalizeImage); cvReleaseImage(&NormalizeImage); } else { cvShowImage(name,Image); } } else { IplImage* ImageResize=cvCreateImage(cvSize(1280,Image->height/(Image->width/1280)),Image->depth ,Image->nChannels); cvResize(Image,ImageResize,1); if(ImageResize->depth!=IPL_DEPTH_8U) { IplImage* NormalizeImage=NULL; NormalizeImage=cvCreateImage(cvGetSize(ImageResize),IPL_DEPTH_8U,1); cvConvertScale(Image,NormalizeImage,1,0);//将图转为0-256,用于图片显示, cvShowImage(name,NormalizeImage); cvReleaseImage(&NormalizeImage); } else { cvShowImage(name,ImageResize); } cvReleaseImage(&ImageResize); } } //对较大的图片缩放,不然显示器分辨率不支持,只能部分显示,具体见http://blog.csdn.net/yanmy2012/article/details/8110516 int MaxImageWidth=2650; float Scale=1; int MinPicWidth=640; int MinPicHeight=428*MinPicWidth/640; int Maxradius_self=68*MinPicWidth/640; int Minradius_self=50*MinPicWidth/640; int Radius_dist=20*MinPicWidth/640; int MaxPicWidth=MinPicWidth*Scale; int MaxPicHeight=MinPicHeight*Scale; void main() { IplImage * pictemp=NULL; IplImage * pic=NULL; char *imgpath="12.jpg"; pictemp=cvLoadImage(imgpath,-1);///获取图片,原色获取 //pictemp=cvLoadImage("IMG_02071.jpg",-1);///获取图片,原色获取 /////////////////改变图片的像素大小 if(pic!=NULL) { cvReleaseImage(&pic); } if(pictemp->width>MaxImageWidth) { pic=cvCreateImage(cvSize(MaxPicWidth,MaxPicHeight),pictemp->depth ,3); cvResize(pictemp,pic,CV_INTER_AREA ); } else { pic=cvCloneImage(pictemp); } ShowConvertImage("pic",pic); cvReleaseImage(&pictemp); IplImage * Gray_pic=cvCreateImage(cvGetSize(pic),pic->depth ,1); cvCvtColor(pic,Gray_pic, CV_BGR2GRAY ); //////将Image变成灰度图片保存在gray中 cvCanny(Gray_pic,Gray_pic,50,150,3); IplImage * Result_pic=cvCreateImage(cvGetSize(pic),IPL_DEPTH_16S ,1); // IplImage * Result_pic=cvCreateImage(cvGetSize(pic),IPL_DEPTH_8U ,1); CvMat *kernel=cvCreateMat(3,3,CV_32FC1); ///卷积核的初始化 ////90度模板卷积核 { cvSetReal2D(kernel,0,0, 1); cvSetReal2D(kernel,0,1, 2); cvSetReal2D(kernel,0,2, 1); cvSetReal2D(kernel,1,0, 0); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 0); cvSetReal2D(kernel,2,0,-1); cvSetReal2D(kernel,2,1,-2); cvSetReal2D(kernel,2,2,-1); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果90°",Result_pic); ////225度模板卷积核 { cvSetReal2D(kernel,0,0, 2); cvSetReal2D(kernel,0,1, 1); cvSetReal2D(kernel,0,2, 0); cvSetReal2D(kernel,1,0, 1); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-1); cvSetReal2D(kernel,2,0, 0); cvSetReal2D(kernel,2,1,-1); cvSetReal2D(kernel,2,2,-2); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果225°",Result_pic); ////180度模板卷积核 { cvSetReal2D(kernel,0,0, 1); cvSetReal2D(kernel,0,1, 0); cvSetReal2D(kernel,0,2,-1); cvSetReal2D(kernel,1,0, 2); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-2); cvSetReal2D(kernel,2,0, 1); cvSetReal2D(kernel,2,1, 0); cvSetReal2D(kernel,2,2,-1); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果180°",Result_pic); ////135度模板卷积核 { cvSetReal2D(kernel,0,0, 0); cvSetReal2D(kernel,0,1,-1); cvSetReal2D(kernel,0,2,-2); cvSetReal2D(kernel,1,0, 1); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-1); cvSetReal2D(kernel,2,0, 2); cvSetReal2D(kernel,2,1, 1); cvSetReal2D(kernel,2,2, 0); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果135°",Result_pic); //90度模板卷积核 { cvSetReal2D(kernel,0,0,-1); cvSetReal2D(kernel,0,1,-2); cvSetReal2D(kernel,0,2,-1); cvSetReal2D(kernel,1,0, 0); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 0); cvSetReal2D(kernel,2,0, 1); cvSetReal2D(kernel,2,1, 2); cvSetReal2D(kernel,2,2, 1); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果90°",Result_pic); ////45度模板卷积核 { cvSetReal2D(kernel,0,0,-2); cvSetReal2D(kernel,0,1,-1); cvSetReal2D(kernel,0,2, 0); cvSetReal2D(kernel,1,0,-1); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 1); cvSetReal2D(kernel,2,0, 0); cvSetReal2D(kernel,2,1, 1); cvSetReal2D(kernel,2,2, 2); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果45°",Result_pic); ////0度模板卷积核 { cvSetReal2D(kernel,0,0,-1); cvSetReal2D(kernel,0,1, 0); cvSetReal2D(kernel,0,2, 1); cvSetReal2D(kernel,1,0,-2); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 2); cvSetReal2D(kernel,2,0,-1); cvSetReal2D(kernel,2,1, 0); cvSetReal2D(kernel,2,2, 1); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1)); ShowConvertImage("卷积结果0°",Result_pic); //315度模板卷积核 { cvSetReal2D(kernel,0,0, 0); cvSetReal2D(kernel,0,1, 1); cvSetReal2D(kernel,0,2, 2); cvSetReal2D(kernel,1,0,-1); cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 1); cvSetReal2D(kernel,2,0,-2); cvSetReal2D(kernel,2,1,-1); cvSetReal2D(kernel,2,2, 0); } ////////////进行卷积核计算 cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(-1,-1)); ShowConvertImage("卷积结果315",Result_pic); cvSobel(Gray_pic,Result_pic,0,1,3); ShowConvertImage("Sobel结果X=0,Y=1",Result_pic); cvSobel(Gray_pic,Result_pic,0,2,3); ShowConvertImage("Sobel结果X=0,Y=2",Result_pic); cvSobel(Gray_pic,Result_pic,1,0,3); ShowConvertImage("Sobel结果X=1,Y=0",Result_pic); cvSobel(Gray_pic,Result_pic,1,1,3); ShowConvertImage("Sobel结果X=1,Y=1",Result_pic); cvSobel(Gray_pic,Result_pic,1,2,3); ShowConvertImage("Sobel结果X=1,Y=2",Result_pic); cvSobel(Gray_pic,Result_pic,2,0,3); ShowConvertImage("Sobel结果X=2,Y=0",Result_pic); cvSobel(Gray_pic,Result_pic,2,1,3); ShowConvertImage("Sobel结果X=2,Y=1",Result_pic); cvSobel(Gray_pic,Result_pic,2,2,3); ShowConvertImage("Sobel结果X=2,Y=2",Result_pic); cvWaitKey(0); cvReleaseImage(&Result_pic); cvReleaseImage(&Gray_pic); cvReleaseImage(&pic); cvReleaseMat(&kernel); }