replace既可以替换某列,也可以替换某行 replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None) 传入的参数既可以是列表,也可以是字典,但是传入的字典,key和value必须不能重复(严格),否则报错 ValueError: Replacement not allowed with overlapping keys and value
pandas-09 pd.groupby()的用法 在pandas中的groupby和在sql语句中的groupby有异曲同工之妙,不过也难怪,毕竟关系数据库中的存放数据的结构也是一张大表罢了,与dataframe的形式相似. import numpy as np import pandas as pd from pandas import Series, DataFrame df = pd.read_csv('./city_weather.csv') print(df) ''' date ci