快速求斐波那契数列<黄金分割率>

有一个固定的数学公式= =,不知道的话显然没法应用

a(n)为斐波那契数第n项

O(1)复杂度

Python

def fib(self, N):
  golden_ratio = (1 + 5 ** 0.5) / 2
  return int((golden_ratio ** N + 1) / 5 ** 0.5)

原文地址:https://www.cnblogs.com/shitianfang/p/12347963.html

时间: 2024-11-07 12:08:18

快速求斐波那契数列<黄金分割率>的相关文章

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

poj 3070 Fibonacci (矩阵快速幂求斐波那契数列的第n项)

题意就是用矩阵乘法来求斐波那契数列的第n项的后四位数.如果后四位全为0,则输出0,否则 输出后四位去掉前导0,也...就...是...说...输出Fn%10000. 题目说的如此清楚..我居然还在%和/来找后四位还判断是不是全为0还输出时判断是否为0然后 去掉前导0.o(╯□╰)o 还有矩阵快速幂的幂是0时要特判. P.S:今天下午就想好今天学一下矩阵乘法方面的知识,这题是我的第一道正式接触矩阵乘法的题,欧耶! #include<cstdio> #include<iostream>

【poj3070】矩阵乘法求斐波那契数列

[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [分析] 这是我们熟悉的斐波那契数列,原来呢我们是递推求值的嘛,当然这是最水的想法~~可是!这里的n很大诶,有10^9,for一遍肯定是不可以的咯. 于是,我学会了用矩阵乘法求斐波那契数列(貌似是很经典的). 作为初学者的我觉得十分神奇!! 好,我们来看: 我们每次存两个数f[i-1]和f[i-2],

快速幂--斐波那契数列

1)编写程序,求解a^b.其中b是正整数. 方法1. //一般求幂算法,O(r) public static long power1(int a,int r){ if(r<0) { System.out.println("r must be positive number!"); return -1; } if(r==0){ return 1; } long res=1; for(int i=1;i<=r;++i){ res*=a; } return res; } 这种使用

矩阵快速幂 斐波那契数列

#include<bits/stdc++.h> #define ll long long using namespace std; struct matrix{ll g[2][2];}; matrix mul(matrix a,matrix b){ matrix c; c.g[0][0]=c.g[0][1]=c.g[1][0]=c.g[1][1]=0; for(int i=0;i<=1;i++) for(int j=0;j<=1;j++) for(int k=0;k<=1;k

求斐波那契数列的第n个数(递归、非递归)

用递归的方式求斐波那契数列的第n个数. 用非递归的方式求斐波那契数列的第n个数. 定义: 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 特别指出:第0项是0,第1项是第一个1. 这个数列从第2项开始,每一项都等于前两项之和. #include<stdio.h> #include<stdlib.

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

利用矩阵求斐波那契数列

利用矩阵求斐波那契数列 flyfish 2015-8-27 矩阵(matrix)定义 一个m*n的矩阵是一个由m行n列元素排成的矩形阵列.矩阵里的元素可以是数字符号或者数学式. 形如 {acbd} 的数表称为二阶矩阵,它由二行二列组成,其中a,b,c,d称为这个矩阵的元素. 形如 {x1x2} 的有序对称为列向量Column vector 设 A={acbd} X={x1x2} 则 Y={ax1+bx2cx1+dx2} 称为二阶矩阵A与平面向量X的乘积,记为AX=Y 斐波那契(Fibonacci

求斐波那契数列的相邻两项的比值,精确到小数后三位。

未完成,只能假设知道是9和10代入. 代码如下: package zuoye; import java.math.BigDecimal; /* * 求斐波那契数列的相邻两项的比值,精确到小数后三位. * p1,p2,p3......pi,pj,...求pi/pj * 1 1 2 3 5 8 13 * 5/8,8/13,...收敛 */ public class Test { static double feibo(int x){ if(x==1||x==2) return 1; return f