[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane

Exercises 3.2

21.

(a). For $\omega = sinz$, what is the image of the semi-infinite strip

$S_1 = \{x+iy|-\pi<x<\pi,y>0\}$

(b). what is the image of the smaller semi-infinite strip

$S_2 = \{x+iy|-\frac{\pi}{2}<x<\frac{\pi}{2},y>0\}$

Solutions:

  First of all, let‘s assume $z = x + iy$, then expand the $\omega$,

$sin(x+iy)=sinx\cdot coshy+icosx\cdot sinhy$

  In addition, observe closely, we will find that it‘s really hard to draw the $w-plane$, whatever the method we use, including "Freeze" Variable and expressing the formula in terms of $\displaystyle e^z$. But now, we can use the concept linear independence on functions to solve the problems!

  Namely, if we assume $f=sinx\cdot coshy$,$g=cosx\cdot sinhy$, the value of  $g$ doesn‘t affect that of $f$! OR, the other way round.

  Proof: let‘s assume $c_1,c_2 \in C$, and $c_1 f+c_2 g = 0$,then

$c_1 tanx \cdot tanhy+c_2=0$

    if, $c_1 \ne 0$, we have $\displaystyle tanx\cdot tanhy + \frac{c_2}{c_1}=0$. Since $x, y$ vary freely in the interval, it‘s quite obvious that it‘s impossible for $c_1$ to be $0$.

    Thus, $c_1 = 0$, and $c_2 = 0$.

  So, to draw the picture of $\omega$, we just need to find the range of $f$ and $g$.

  The remaining parts are left for the readers.

原文地址:https://www.cnblogs.com/raymondjiang/p/12233389.html

时间: 2024-10-14 15:34:48

[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane的相关文章

定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl

因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式. 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Complex C1,Complex C2) 求两个复数的差的方法:(参数

A brief introduction to complex analysis

\(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (complex) differentiable at a point \(z_0 \in intU\)(int:内部) If f is cpx diff at \(z_0\),we call the limit the (cpx) derivative of f at \(z_0\) and devote i

A Software Engineer’s Adventures In Learning Mathematics

1. Reference https://medium.com/@warrenhenning/a-software-engineers-adventures-in-learning-mathematics-62140c59e5c 2. Detail A Software Engineer’s Adventures In Learning Mathematics What we hope ever to do with ease, we must first learn to do with di

How to do Mathematics

著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源:知乎 Benson Farb:晨兴通俗报告How to do Mathematics文稿(z) 晨兴通俗报告How to do Mathematics文稿(任金波整理,欢迎纠错) 以下是我整理并翻译成汉语的,本人才疏学浅,有些地方实在没听懂,其余部分难免也有很多错误,翻译的汉语对演讲者的意思的传达

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{c

complex brain network

Organization, development and function of complex brain networks The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.

Machine Learning Trick of the Day (1): Replica Trick

Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machine learning, in both research and in production settings. These tricks allow us to address many different types of data analysis problems, being rough

C++ Complex复数类的实现

#include "std_lib_facilities.h" using namespace std; class Complex{   private:     double real;     double imag;   public:     Complex(){real=0;imag=1;}     Complex(double r,double i):real(r),imag(i){}     Complex(const Complex &tmp):real(tm

侯捷老师C++大系之C++面向对象开发:(一)不带指针的类:Complex复数类的实现过程

一.笔记1.C++编程简介 2.头文件与类的声明 防卫式声明#ifndef __COMPLEX__#define __COMPLEX__ -- #endif头文件的布局模板简介template<typename T>3.构造函数 inline函数:函数若在class body内定义完成,便自动成为inline候选人 访问级别:public private被外部访问的函数设为public 构造函数complex (doble r=0,double i=0) :re(r),im(i){ }先初始化